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Abstract

Epileptic seizures can cause serious injuries when individuals with epilepsy are unable
to move to a safe position in time. Predicting seizures in advance is therefore crucial for
ensuring patient safety and reducing costs associated with seizure-related injuries. Dogs,
known for their highly sensitive noses, have demonstrated the ability to accurately predict
epileptic seizures, prompting the question of whether a wearable device could replicate
this capability. This study investigates the feasibility of using electronic noses (e-noses)
combined with machine learning frameworks for seizure prediction. In the EPILEPSIA
study, smell data was collected from individuals with epilepsy using e-noses. Given the
numerous hyperparameters involved in seizure prediction, a grid search was conducted
to explore these options. The grid search trained 576 time-series CNN classifiers, yielding
promising results, with the best model achieving an accuracy of 77%. However, the small
dataset limited the robustness of these findings, as feature permutation and noise tests
revealed instability and potential overfitting of the model. These results emphasize the
need for further research with larger datasets to validate the potential of wearable e-nose
devices as reliable tools for seizure prediction.
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1 Introduction

Imagine living with the constant uncertainty of when the next seizure will occur. You
could be walking down a busy street, standing at the edge of a train platform, or simply
preparing dinner in your kitchen. Without warning, a seizure could take place, leaving you
vulnerable to serious injury or worse. For millions of people with epilepsy, this is a daily
reality — a life shaped by unpredictability and fear. Beyond the physical dangers, this
uncertainty takes a toll on mental health and overall quality of life. It forces individuals to
plan their lives around a condition they cannot control. Despite advances in medicine and
technology, the ability to predict a seizure in their daily life remains an unmet need. What
if there were a way to predict these events before they happened? This question drives a
growing body of research aimed at creating innovative solutions to bring safety and peace
of mind to those living with epilepsy.

1.1 Problem Statement

Epilepsy is one of the most prevalent brain conditions affecting over 50 million people on
earth. Premature death is nearly three times as likely for people with epilepsy. On top of
physical harm that the neurological condition can cause, people with epilepsy are likely to
be stigmatized and discriminated against. There also exists a significant treatment gap,
as low-income countries have more cases of epilepsy yet do not have the means to treat
them. While there are remedies available that can make people with epilepsy seizure free,
helping people with epilepsy will need a multifaceted approach. [1, 2]

Another approach, apart from trying to make people seizure free, is to know beforehand
if a person is about to have a seizure and warn them in time. It has been shown that
with data from specialized equipment, such as an electroencephalogram (EEG), machine
learning models can be trained to do just that with adequate accuracy [3, 4]. While this is
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1 Introduction

an incredible achievement, it is crucial to remember that this prediction can only be done
in a clinical setting, due to the size of the equipment involved. There is currently no way
for people with epilepsy to be warned in time when going about their daily lives.

The ability to predict seizures in real-time would allow individuals to take necessary
precautions, avoid dangerous situations, and potentially reduce the risk of injury. More-
over, it would provide a sense of control and peace of mind, significantly improving their
overall well-being. [5, 6]

1.2 Learning from Canine Abilities

Dogs have an extraordinary sense of smell, with a very low threshold for olfactory de-
tection [7]. While humans are only able to smell a substance if it can be measured at
40-60 parts per billion (1 × 10−12), dogs can go as far as smelling compounds in the range
of parts per trillion (1 × 10−15) [8]. This extraordinary olfactory ability allows them to
detect minute changes in the chemical composition of sweat, which can also occur before
a seizure. This ability in combination with operant conditioning allows for dogs to be
trained to identify all kinds of diseases. Not only can they be trained on sweat samples,
but also on saliva, urine or breath samples [9]. While in other industries trained dogs have
always played an important role, for example sniffer dogs for police or the army, this level
of involvement of dogs is not matched in the medical field. Doctors and medical experts
mostly prefer advanced technical methods instead, although dogs often deliver accuracy
rates on par with technical approaches. It is most likely that the adoption rate is low due
to the novelty and less standardized nature of olfactory detection by dogs. [9]

The exact mechanism by which dogs detect these changes is not yet fully understood, but
it is believed that they can sense specific smells that are released by the body in response to
certain diseases. In the case of epilepsy, electrical brain activity is not the only biomarker
that is changing before a seizure occurs. There have been numerous studies observing
dogs correctly distinguishing sweat samples before and after a seizure of a person with
epilepsy [10, 11, 12, 13]. It can therefore be concluded, that there are volatile organic
compounds being released before a seizure that are definite indicators that a seizure is
about to happen. By collecting smell data of people with epilepsy, one should be able
to reproduce the same result, given the correct volatile organic compounds are being

2



1 Introduction

measured. The difference of course being, that by devising a correct machine learning
algorithm and packing it into a wearable device, people with epilepsy could be warned of
upcoming seizures.

While we talk about the different smells that dogs pick up, these smells are specific volatile
organic compounds (VOCs), which are chemical substances that easily evaporate at room
temperature and can be identified in the air. These compounds are released by the human
body and may change in response to physiological conditions, such as an impending
seizure.

The potential for using volatile organic compound data as a biomarker for seizure predic-
tion is significant. If these compounds can be reliably identified and measured, it could
lead to the development of non-invasive wearable devices that monitor VOC levels in
real-time. Such devices could provide early warnings of impending seizures, allowing
individuals to take preventive measures and avoid potentially dangerous situations.

1.3 Scope and Delimitations

The goal of trying to predict epileptic seizures is an enormously ambitious one, which
is why the scope of this master thesis has to be limited to ensure that the objectives are
achievable within the given timeframe and resources. This thesis will focus specifically
on the analysis of volatile organic compound data collected through a smell sensor.
Other aspects, such as the integration of additional sensor data or the development
of a comprehensive seizure prediction system, will not be covered in this work. The
primary aim is to explore the feasibility of using volatile organic compounds (VOCs) as
biomarkers for seizure prediction and to develop a preliminary machine learning model
based on this data. Furthermore, a closer look at the impact of hyperparameters will be
taken.

The machine learning framework SKTime and specifically the convolutional neural net-
work (CNN) classifier [14], which has been specifically designed for time-series data, will
be used to build experimental machine learning models with the collected data.

3



1 Introduction

The variation in the parameter grid that will be examined will be limited due to computing
power and time constraints. For each fixed variable in the grid-search, reasoning for not
exploring the option further will be provided.

1.4 Research Questions

The main focus of this master thesis will be on analysing the data gathered through a smell
sensor and afterward trying to predict epileptic seizures with this data. Even though the
likelihood of predicting epileptic seizures increases with the number of different features
being incorporated in the training of a machine learning model, it is not the goal of this
thesis to predict seizures based on the whole plethora of vital parameters available. The
task of combining all features into one prediction model would be out of scope for this
master thesis.

Therefore, we come to the conclusion that this master thesis will try to answer the following
research question:

1. How effectively can epileptic seizures be predicted using volatile organic compound
data combined with a convolutional neural network and grid-search optimization?

1.5 Methodology

A general understanding of epilepsy as a condition as well as volatile organic compounds
is necessary for all later chapters, which is why chapter 2 gives an overview over both
topics. The related work chapter showcases what has already been tried in epileptic seizure
prediction research and where the research gap currently is. In chapter 4 we start of by
explaining where and how we collected the data used in the later analysis. Afterward,
all possible hyperparameters that could meaningfully affect model performance will be
discussed. Since there is no comparative literature that can suggest optimal values for our
context-specific hyperparameters, a grid-search of possibly impactful settings for the CNN
model will be done. All training is done using a set seed, as to guarantee reproducibility. In
the grid-search we trained 576 differently configured models, gauging what performance
is possible using our collected data. Label shuffling tests were conducted to make sure well
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1 Introduction

performing models are not doing so by chance. Lastly, feature permutation, perturbation
and ablation tests will assess the trained model regarding its robustness.

1.6 Terminology

In this thesis I will refrain from using the term "epileptic person" or using the abbreviation
"PWE" (person with epilepsy), since both are considered stigmatizing and have a negative
societal connotation [15, 16, 17].

5



2 Foundations

2.1 Epilepsy

To understand why the goal of predicting epileptic seizures ahead of time is meaningful,
it is imperative to understand in which way epilepsy manifests itself and how people
living with epilepsy are being affected by it. For this reason this chapter will give a
broad overview about the theoretical and practical aspects of the condition. To make for a
more coherent introduction to the condition we will begin by examining the prevalence
of epilepsy and continue by delving into the possible causes of how the condition is
developed. Afterwards we will take a close look at the different types of epilepsy and
how they are currently being classified. Following the categorization we will discuss
the different phases of an epileptic seizure and which treatments are commonly being
given.

It goes without saying that we will only be scratching the surface of the current literature
and not all details will be covered. This chapter simply provides an introductory overview
as many theoretical concepts will come into play when examining the gathered data from
our study.

2.1.1 Epidemiology

Epidemiology studies the frequency of occurrence and distribution of a condition in a
portion of the population. In the case of epilepsy there currently approximately 50 million
people affected worldwide with an incidence of 5.4 to 8.1 per 1,000 people per year [18].
The share of the population with epilepsy will likely increase over time. The reason for
this is twofold: epilepsy often occurs as a subsequent condition after surviving a serious
accident or stroke, secondly, due to the increased median life expectancy [19], humans

6



2 Foundations

are reaching ages in which the chance of developing epilepsy increases significantly. The
chances for developing epilepsy are highest at the ages 5 to 9 and 80 and above. While
age does play an important role in the prevalence of epilepsy, gender does not. [20]

Developing countries or countries with higher parasitic infection rates, subpar health care
systems or less access to anti-seizure drugs report an up to three times higher prevalence
of epilepsy than developed countries [20, 21]. Estimates suggest that 70% of current active
epilepsy (AE) cases could live seizure free if treated correctly. [22]

2.1.2 Etiology

Etiology studies the origin of a condition. In the case of epilepsy for a major portion of all
people with epilepsy a definite causality cannot be determined. Epilepsy has countless
risk factors which have to be accounted for when determining the origin of the condition.
The most impactful factors being injury severity, low grade tumours, Alzheimer’s disease
and strokes. Alcohol consumption played less of a role in epilepsy development. Just
as the prevalence differs from country to country, so do the etiological reasons for the
development of the condition. Risk factors such as perinatal trauma and infections are
more likely to occur in low income countries. [23]

Figure 2.1: Etiology of adults with epilepsy between the ages 18-84. [24] There were no cases
with metabolic related etiology and only 2 cases of the total 653 had immune related
etiological causation.

28%
26%

6%
40%

Structural
Genetic
Infectious
Immune
Metabolic
Unknown
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2 Foundations

The distribution seen in section 2.1.2 shows the etiological origins for epilepsy in a sample
group of adults. Structural etiology refers to abnormalities visible on neuroimaging, with
which clinicians can visually determine the cause of seizures to be the visible abnormality.
More clearly, genetic reasons determine the origin of the condition to be a known or
presumed mutation, not all genes involved in this process are known yet. Infectious
reasons stem from seizures being a symptom for many diseases, such as meningitis or
encephalitis. It is important to note that according to the International League Against
Epilepsy (ILAE) classification a patient can fall into more than one etiological category.
[25]

2.1.3 Categorization

Categorization of cases of epilepsy, is a vital part of the research concerning epilepsy as it
functions as the foundation for further research and treatment. The ILAE classification
in and of itself is an important clinical guideline on how to categorize epilepsy cases.
Subsequent research and treatment always depends on the current diagnosis, which,
if imprecise, leads to worse outcomes for patient and research alike. Therefore, the
specification files each case according to the following categories. This categorization is
independent of the etiological diagnosis. The following categorization based on the ILAE
classification of the epilepsies is a first step in categorizing epilepsy cases.

• Seizure type

– Focal onset

– Generalized onset

– Unknown onset

• Epilepsy type

– Focal

– Generalized

– Combined Generalized & Focal

– Unknown

8



2 Foundations

The diagnosis according to the classification is to be seen as building upon each other. The
precondition being that the clinician already ruled out all diagnosis other than epilepsy. It
is possible to only be able to classify according to the first level, seizure type, particularly
if a patient only experienced a single seizure.

Statistically speaking, some types of seizures and epilepsies are more prone to developing
learning disabilities or can be at a higher risk of other comorbidities such as Sudden
Unexpected Death in Epilepsy (SUDEP). This again underlines the importance of a correct
classification.

The ILAE 2017 specification also refers to a third level, classification by epilepsy syndrome,
however a formal list of possible syndromes is not provided. The specification paper refers
to their website [26], which contains an extensive list of syndromes. These syndromes
are commonly known occurrences of epilepsy with a certain combination of seizure and
epilepsy types. [25]

As we begin speaking about focal and generalized seizures it is important to understand
the difference between the two. One way to differentiate between focal and generalized
seizures is by looking at the electroclinical markers, by means of an EEG. While general-
ized seizures have their origin at one specific point in the brain and activate bilaterally
distributed networks, focal seizures are limited to one hemisphere in the brain. [27]

While the initial classification paper is a useful tool for clinicians to make a first cate-
gorization, the operational classification guideline goes into detail about how one can
determine a certain seizure type [28]. Epileptic seizures can present themselves with
wildly different symptoms. Distinctions can for example be made when looking at the
awareness of the patient during the seizure. Patients with generalized seizures typically
lose their awareness completely during the seizure or have little memory of the event. In
the case of focal seizures, patients retain their awareness at the onset of the seizure, even
though they sometimes lose awareness later on. The distinction between characteristics
of seizures can be beneficial for machine learning experiments with only certain seizure
types.

Figure 2.2 shows the full operational classification of seizure types. While there are many
specific categories a seizure can fall into, the most important distinction is based on the
motor component. There are many ways a motor onset can present itself, whether through
jerking motions (clonic), muscles becoming limp (atonic) or tense and rigid muscles (tonic).

9



2 Foundations

Non-motor onset on the other hand may show itself through behaviour arrest, such as
a staring spells. One interesting type of motor onset that should be highlighted is in the
form of automatism. In this case the pre-ictal movement is continued throughout the
seizure.

Focal Onset

Aware / Impaired
Awareness

Motor Onset
automatisms

atonic
clonic

epileptic spasms
hyperkinetic
myoclonic

tonic

Nonmotor Onset
autonomic

behaviour arrest
cognitie

emotional
sensory

Generalized Onset

Motor Onset
tonic-clonic

clonic
tonic

myoclonic
myoclonic-tonic-clonic

myclonic-atonic
atonic

epileptic spasms

Nonmotor Onset
typical
atypcial

myoclonic
eyelid myoclonia

Awareness typically
lost

Unknown Onset

Aware / Impaired
Awareness

Motor Onset
tonic-clonic
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Figure 2.2: Operational classification of seizures types according to the ILAE.

2.1.4 Phases of an epileptic seizure

What is especially important, also for our task, is the distinction that is to be made between
different phases of a seizure. As each phase is characterized by different symptoms and
physiological changes. Understanding these phases is crucial for both diagnosis, treatment
and possible prediction. While there multiple ways to differentiate between seizure phases,
the one most useful for our use case will be elaborated on.

2.1.4.1 Pre-ictal phase

This phase is also sometimes called prodromal or aura phase. While there are varying
opinions, research defines the pre-ictal phase as the time window few minutes before the
seizure begins. This will be especially important later on, as the variation of the picked
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time window will impact machine learning results greatly. Le Van Quyen et al. identifies
the time window 5 minutes before the seizure as the pre-ictal phase [29]. The pre-ictal
phase is the ideal phase where a prediction of future seizures can be made. The patient
may experience subtle changes in mood, behaviour, or sensations during this phase, but is
not experiencing any symptoms of an actual seizure. Not all patients can tell when they
are in a pre-ictal state, since this would mean that all patients could themselves predict
when a seizure will occur.

2.1.4.2 Ictal phase

The ictal phase is the seizure itself, defined as the peak of abnormal electrical activity in
the brain. Behavioural changes may present themselves during the ictal state, meaning
there is not only one way to detect a seizure [30]. This phase can vary greatly in duration
and intensity, depending on the type of seizure. The symptoms and types of seizures that
can take form have been explained in section 2.1.3.

It can sometimes be difficult to differentiate between inter-ictal abnormal activities in the
brain and actual ictal states. [31]

2.1.4.3 Post-ictal Phase

The post-ictal phase follows the ictal phase and can last from minutes to hours to days.
During this phase, the brain is recovering from the abnormal electrical activity. Individuals
may experience confusion, drowsiness, headache, and memory loss. The severity and
duration of the postictal phase can vary depending on the type and duration of the seizure.
[32]

2.1.4.4 Inter-ictal Phase

The inter-ictal phase is defined as any time between ictal or post-ictal states. Since it is
difficult to pinpoint the exact end of a post-ictal state, this is also the cases for inter-ictal
phases since they are adjacent. [31]
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2.1.5 Treatment options

There are drug-free ways patients can become seizure-free, for example through hormonal
therapies, diet, surgery, neurostimulation, and behavioural modification techniques. While
these have been proven to work to some degree, the most effective way to treat epilepsy is
by using Anti-Epileptic Drugs (AED).

While effective, patients can experience serious side effects that need to be considered
when choosing an AED. Treatment options need to be evaluated over time, since it is rare
for patients to successfully receive the same treatment over the years. [33]

Even with treatment, some patients will not be able to live seizure-free, making a prediction
system even more valuable.

2.2 Volatile Organic Compounds

2.2.1 Definition

Volatile Organic Compounds (VOCs) are a large group of carbon-based chemicals that
easily evaporate at room temperature. They are called volatile because they have a high
vapour pressure at ordinary room temperature, which means they can easily become
vapours or gases. All living beings, including humans, emit volatile organic compounds.
These emissions are usually coming from breath, sweat from the skin, urine or blood itself.
The VOCs that are emitted by a human can be used to make certain assumptions about
them regarding their health [34]. There is an important distinction to be made in the origin
of a volatile organic compound. VOCs can also originate from anthropogenic sources,
such as the processing or burning of fossil fuels or the evaporation of solvents used in
an industrial complex. Even though the VOCs coming from anthropogenic sources often
times cause adversary health issues, they are not of interest for this theoretical elaboration.
[35, 36]
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2.2.2 Measurement Techniques

The standard way to measure VOCs has been gas chromatography mass spectrometry
(GC/MS), while accurate, this method has been deemed as slow and expensive, which is
why multiple new ways for separating and detecting VOCs have emerged in the last few
years [37]. Other methods like proton-transfer reaction mass offers a faster response time
and are equally sensitive, which is why they are used in the detection of trace levels of
VOCs in the atmosphere [38]. Selected ion flow tube mass spectrometry (SIFT-MS) has
also been proven to work in situations where real-time detection of VOCs is required and
a wide range of VOCs needs to be covered [39].

In our context, the most important way of measuring VOCs in the air is the electronic
nose. Different to the methods like GC/MS or SIFT-MS, where the measured VOCs
can be specified, e-noses work with a sensor array of non-selective gas sensors. These
non-selective gas sensors only detect the presence and concentration of VOCs but do
not specify which VOCs are currently being measured. As a single sensor is completely
non-selective, no valuable information could be learnt from it. When bundled in an array
of sensors, which all respond slightly differently to the VOCs around them, a fingerprint
of different VOCs can be captured. Through pattern recognition algorithms the presence
of individual VOCs can then be captured. [40]

2.2.3 Factors influencing Volatile Organic Compound Profiles of Humans

Humans emit a wide range of different VOCs in different amounts. They emit so many
that it is in fact possible to uniquely identify each human being based on their VOC profile
[41]. Even more important than unique identification, the individuals VOC profile gives
insight into their current well-being. This insight is only possible if the recording of the
VOC profile goes undisturbed and is not contaminated with unrelated data. Depending
on from where the VOC data is being captured this poses more or less of a risk. Wang
et al. showed that environment conditions such as temperature or even the clothing of
an individual can affect the amount and concentration of the VOCs being picked up by
the sensor [42]. Smoking behaviour as well as age, BMI or gender can have an effect on
the human VOC profile [43], this could be especially relevant for future prediction tasks
using VOC data. In an experiment in a closed classroom, Tang et al. found personal care
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products to be a massive emitter of VOCs as well as human skin oil oxidation by ozone
present in the air [44].

Inhibiting factors like clothing or masking factors like personal care products need to be
addressed when experimenting with VOC-based diagnosis as these factors could disrupt
clean data collection and possibly lead to false results.
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In chapter 2 the theoretical aspects of both epilepsy and volatile organic compounds have
already been discussed. Therefore, in this related work chapter the literature regarding
epileptic seizure prediction and prediction of other diseases using VOC data will be
highlighted.

3.1 Status quo of epileptic seizure prediction

Gaisberger wrote his master thesis on the status quo of seizure prediction, considering
all types of biomarkers and machine learning techniques [45]. This work has shown that
often times studies regarding seizure prediction and detection do not classify the type of
seizure. Cases are then broadly classified as "epileptic seizures", even though there exists
a myriad of different seizure types, which could serve as additional and critical meta
information about the study and the results. The reasoning behind this could be, that this
field of study is still in its infancy and considering all types of seizures when predicting
or classifying data broadens the data set. Of course, from a research perspective clearly
defining which types of seizures are easy or harder to predict and what caveats come with
each one is still interesting.

In addition to the conclusions about seizure classification, [45] also showed that EEG data
is the number one factor when it comes to classification as well as prediction, with over
85% of studies in the meta analysis using EEG data for prediction and detection. There are
other biomarkers that are currently being used, but mostly in combination with the EEG
data available. Heart-rate variability, acceleration data and electrocardiography (ECG)
data, blood volume pulse and electrodermal activity data (EDA) were infrequently used,
only in up to 4% of the studies.
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Regarding the distribution of machine learning methods used in the detection and pre-
diction of epileptic seizures, no clear favourite can be determined according to [45]. All
currently popular techniques, such as CNN, ANN, RNN and LSTM were used in the
studies and performed well.

3.2 Volatile organic compound based detection of epilepsy

The idea of using olfactory data to make a distinction between people with and without
diseases is not new. This is also the case for epilepsy. Dartel et al. showed that e-noses
were able to distinguish breath profiles of people with epilepsy and a control group of
people without epilepsy. The prediction model created in the study reached a sensitivity of
76%, specificity of 67% and an accuracy of 71%. The study disclaimed that the results were
subpar, due to the use of anti-epileptic drugs in their participants. This suspicion had been
confirmed by assessing two additional control groups, with and without anti-epileptic
drugs. [46]

3.3 Canine seizure prediction

While e-noses have not been in use regarding the prediction of seizures, dogs have been
known to show a reaction before seizures. There have been several studies proving that
there is a specific seizure odour that is emitted before the seizure, which the sensitive dog
noses are able to pick up. [13] clearly showed that, dogs cannot only smell odours of other
diseases such as breast or lung cancer, but smell upcoming epileptic seizures as well. [12]
shows that even untrained dogs show a reaction before the onset of a seizure.

While showing that dogs have these capabilities is already a huge step forward, finding
out what exact VOC they are smelling when correctly identifying a seizure is even more
relevant for our use-case. In a 2016 dissertation project Davis for the first time identified
menthone as a possible biomarker in the pre-ictal phase of epileptic seizures [47]. These
results have then been confirmed in later studies by Maa et al., where menthone was
also identified as one of the primary VOCs found in pre-ictal people with epilepsy [10].
Additionally, canine trials showed that the olfactory prediction of seizures precedes all
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electronic biomarkers by "a considerable amount of time", according to Maa et al. Addi-
tional VOCs that could potentially be of relevance, such as menthyl acetate or camphor,
are also listed. In a follow-up study Maa, Arnold, and Bush further cemented menthone
as a primary component of seizure-scented sweat. However, this study revealed that this
VOC cannot only be found in people with epilepsy, but can be found in all humans when
they experience fear. This was shown, as dogs were not able to tell the difference between
seizure sweat samples and fear sweat samples [11]. While there are now multiple studies
stating menthone as a VOC, it is important to not rule out any other possible VOCs or
patterns in this data analysis.

3.4 Volatile organic compound based prediction of other
diseases

At the time of writing, there are no studies trying to predict or detect epileptic seizures
using VOC data. Contrarily, there have been multiple attempts to detect various forms of
cancer using smell data gathered by e-noses [48, 49, 50, 51]. All of these studies showed
promising results with accuracy, sensitivity and specificity upwards of 85% using LDA,
logistic regression and kNN.

VOC data has not only been used to predict cancer, but also chondrosarcoma [52], car-
cinoma [53] and candidemia [54]. All of these studies showed promising results, which
underlines the importance of possible similar results for seizure prediction using VOC
data.
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4.1 The EPILEPSIA project

Before going into the preprocessing and data analysis it is important to elaborate on how
the data has been collected. This master thesis is made possible due to the data collected
in the EPILEPSIA study, which was conducted at the Neuromed Campus and the Med
Campus IV in Linz. The primary goal of this study was to collect as much vital parameter
data of persons with epilepsy as possible. By default, persons with epilepsy were regularly
scheduled for checkups in the video-EEG units in the two respective hospitals in Linz,
where they remained on average for 2-7 days. Upon arrival, they were asked if they
wanted to participate in our study, which would mean being connected to an additional
set of sensors. These additional sensors and their placement can be seen in Figure 4.1. In
Table 4.1 the different vital parameters which are being collected by the respective sensors
can be seen. It is important to note that these sensors did not interfere in any way with
the regular EEG that the person with epilepsy is required to wear during the checkup.
Meaning that neither placement of EEG-electrodes nor recorded data was disturbed by
our study.
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Smell Inspector

Plux

Cosinuss

MetaMotion

Figure 4.1: Front view (left) and back view (right) of the EPILEPSIA study setup.

Sensor Vital parameters
Cosinuss Photoplethysmogram, blood oxygen levels, heart-rate, tem-

perature, respiration rate, perfusion

MetaMotion Accelerometer, Magnetometer, Gyroscope

Plux Electromyography, electrodermal activity, near-infrared
spectroscopy

Smell Inspector 64-channel sensor array reacting to different VOCs

Table 4.1: Used sensors and the vital parameters they record

The Smell Inspector, was deliberately placed near the armpit where the most VOC data
could possibly be recorded. This was decided after consulting with doctors at JKU
and technical staff at Smart Nanotubes Technologies, the company behind the Smell
Inspector.

In addition to the sensors themselves, there were many hardware and software compo-
nents necessary during our study. These components were mostly used by medical staff
whenever the sensors of a patient went low on battery and needed to be switched. Here is
a short overview over all components that were used during the study.
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• Android tablet app for connecting sensors and sending data to the Influx database

• Web-app dashboard giving an overview over current patients and sensors

• Influx database for storing sensor data

• MongoDB database for storing metadata

When a sensor ran out of battery, all five sensors were switched out collectively, as to
guarantee a regular sensor swapping cycle. The sensor with the shortest battery life was
the Plux sensor, with 12 hours battery, meaning every 12 hours all sensors needed to be
changed. This was done by medicine students that were paid to help conduct the study.

While there were technical and organizational issues from time to time, leading to some
data loss, a satisfactory amount of data has been collected for each patient. We expected
some technical issues, since the Bluetooth connection between the sensors and the tablet
cannot be guaranteed to be completely stable.

4.2 Pipeline architecture

In order to get to a valid result, a lot of detailed processing has to be done. To keep the
end goal in mind and not get lost in the details, this short overview should be used as a
reference which steps are going to be taken. The overview of the pipeline architecture that
has been created in this prospective study can be seen in fig. 4.2. In all later chapters a
more detailed view of the pipeline will be displayed.
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Load and cache
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Filter faulty data
and impute missing
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performance
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Evaluate overall
results of all models

Look at singular
result of best

performing model

Repeat after fine tuning pipeline steps

Figure 4.2: Overview of the pipeline architecture.

The pipeline begins by loading and caching data from the Influx Database, which is built
for working with time-series data. Caching ensures that repeated data access during
model development is efficient and does not require constant querying of the database.
Once the data is available, the next crucial step is cleaning it. The issue of faulty or missing
data points need to be addressed, which is why the next chapter is of utmost importance.

Afterwards, the data is split into training and testing sets according to a specific strategy
that allows for the best results in our use case. Before starting the grid-search, two
important variables need to be determined. Firstly, according to which parameters should
the trained models be ranked and secondly, what hyperparameter ranges should be
included in the grid-search.

Once training is complete, the results of all models are evaluated to identify the most
promising configurations. From this group, the single best-performing model is examined
in detail to understand its predictions and behaviour. Finally, based on these insights,
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the pipeline can be fine-tuned and the process repeated, improving each stage based on
lessons learned in the previous iteration.

4.3 Preprocessing

Preprocessing the collected data poses a significant challenge in our case, as there are
countless ways to process the data, but limited research to guide the decision-making
process. This uncertainty is one of the reasons a grid search was conducted, as it helps
identify the options that yield the best results.

Many preprocessing choices, while not typically considered hyperparameters, can have a
substantial impact on model training. As a result, these options, such as the length of the
prediction window, are included in the grid search. For example, the grid search might
compare prediction windows of 5 minutes and 10 minutes to assess how varying this
parameter affects performance. All preprocessing choices treated as hyperparameters are
detailed in section 4.4.

To give an overview of the following steps beforehand, fig. 4.3 shows what tasks need to
be accomplished, before any analysis can be done on the data.

Filtering ictal
marker timestamps

Filtering faulty VOC
data

Creating data
structures for

further analysis

Creating inter-ictal
marker timestamps

Figure 4.3: Overview of the preprocessing steps within the pipeline.
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4.3.1 Marker dataset

Markers, in our case, are the timestamps that were given to us by the medical staff that
denote the start and end of a seizure for a given patient. Having these timestamps is the
crucial element upon which all further analysis is based upon. Given these timestamps
we can calculate the start of a time window that will be feed into a machine learning
framework. For our purpose, the most important differentiation should be made between
ictal markers and inter-ictal markers. Ictal markers pinpoint the start of a seizure, while
inter-ictal markers are used to identify time windows which can be used as baseline. Only
these two categories are necessary, because pre- and post-ictal markers can simply be
calculated based on the initial ictal marker.

In total, we have gathered data from 81 people with epilepsy of which 30 had seizures
while participating in our study. For these 30 people with epilepsy we have 352 markers
denoting either the starts or ends of seizures during their time participating in the study.

Ictal marker dataset

Knowing the exact moment a seizure occurred is the most important factor when analysing
seizure time series data. For that reason, seizure markers corresponding to the start and
end times of seizures of all patients are our basis for further analysis. These seizure
markers were manually created by doctors in the NeuroMed and MC IV Campus.

We have the following columns of information about each of the 352 markers in our
database.

• EPILEPSIA ID

• Time

• Marker

• Type

The EPILEPSIA ID is a 6 digit combination of upper case letters and numbers to uniquely
and identify each patient in the study. This ID is pseudo-anonymous, meaning that
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non-hospital staff cannot retrace which EPILEPSIA ID belongs to which person with
epilepsy.

The marker column contains the respective start and end markers for the video and EEG
signal. In Table 4.2 the respective counts of each marker are displayed.

Marker Count
EEG Seizure Start 96
EEG Seizure End 104
Video Seizure Start 71
Video Seizure End 81

Table 4.2: Counts of the different seizure markers obtained.

Since all of our study participants were observed in Video-EEG units there are two different
methods of confirming a seizure. Firstly, often times the seizure causes a motor reaction,
causing the person to twitch or stiffen their muscles. The start and end of this reaction can
then be seen on the video recording and therefore the timing can be deduced. Secondly,
trained professionals and doctors are able to determine a seizure start and end based on
an EEG recording. A non-motoric seizure cannot be seen visually and there might only be
the EEG signal to correctly identify a seizure start and end.

Due to human error, not every seizure is correctly labelled with a corresponding start
and end marker. There are cases where start or end markers are non-existent for a given
seizure. The discrepancies are displayed in Table 4.3. For the purpose of further analysis
we will have to disregard all markers where only an end marker for a seizure exists, as
we can only guess when the seizure actually started. Contrary, start markers without a
corresponding end marker are of less concern, as we can approximate the duration of the
seizure.

Since there can be two start and end markers for the same seizure, they will often overlap
one another. For this reason the number of markers does not equal the number of recorded
seizures.
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Statistic EEG Video
Start marker without end 9 2

End marker without start 20 15

Number of cycles with supposed seizure duration over 10 minutes 2 0

Number of cycles with normal duration 82 66

Table 4.3: Statistics for the marker dataset. A normal cycle consists of a pair of start and end
markers with a duration under 10 minutes.

The literature suggests that in most cases an epileptic seizure can be identified based on
the EEG signal before the video recording [55, 56]. This can be confirmed by looking at
our dataset, as in 77 of 93 cases of seizures where both a EEG marker and a video marker
are available, the EEG seizure start marker comes before the video seizure start marker.

By analysing the marker dataset further, we can also already define an average time win-
dow for seizures in our dataset. This will be important for cases in which no end marker
can be found. Figure 4.4 shows a box plot of the duration of the recorded seizures.
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Figure 4.4: Average duration of all seizures with a normal cycle, i.e. start and corresponding end
marker. Outliers over 200 seconds not shown.

To see if there is trend of seizures occurrence during a specific time of the day we can take
a closer look at the timestamps of the markers. Figure 4.5 shows that there is no trend
for patients being more likely to experience a seizure during a certain time of day. There
could be some statistical evidence that only certain patients experience seizures more
often during a specific time of day, but this is out of scope for this thesis.
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Figure 4.5: Distribution of seizure timestamps.

Lastly, our marker dataset also contains a type column, which gives us all the information
about the type of seizure the patient experienced. The different types and their respective
counts are displayed in Table 4.4.
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Type Count
Focal Onset - Aware - Motor Onset - tonic 74

Focal Onset - Impaired Awareness - Motor Onset - automatisms 67

Focal Onset - Impaired Awareness - Motor Onset - tonic 50

Focal Onset - Aware - Nonmotor Onset - autonomic 37

Focal Onset - Impaired Awareness - Nonmotor Onset - autonomic 20

Focal Onset - Impaired Awareness - Nonmotor Onset - cognitive 16

Focal Onset - Aware - Nonmotor Onset - behavior arrest 16

Focal Onset - Impaired Awareness - Nonmotor Onset - behavior arrest 15

Focal Onset - Aware - Motor Onset - automatisms 13

Focal Onset - Aware - Motor Onset - clonic 9

Focal Onset - Aware - Motor Onset - myoclonic 8

Focal Onset - Impaired Awareness - Motor Onset - clonic 8

Focal Onset - Aware - Nonmotor Onset - sensory 8

Generalized Onset - Motor - tonic-clonic 4

Unclassified 2

Focal Onset - Impaired Awareness - Motor Onset - myoclonic 2

Focal Onset - Aware - Motor Onset - atonic 2

Generalized Onset - Motor - tonic 1

Table 4.4: Seizure types and their counts.

While the type of seizure was initially assumed to be of more importance, [10] states that
both focal and generalized seizures emit the same seizure scent, menthone. Even though
it should not be assumed that every type of seizure emits exactly the same VOCs, this
should serve as an indicator that an algorithm that can predict one type of seizure might
also be used to predict other types of seizures.

Additionally, splitting the dataset according to singular epilepsy variants and trying to
predict based on the smaller dataset would be out of the scope for this thesis.

Not all markers currently in the database are of use for our machine learning task. Firstly,
we can disregard all end markers since we will not be training on the data during a seizure
event, only on inter-ictal and pre-ictal data. The reasoning for this will later be become
evident in section 4.3.3. This will already eliminate about half of all markers.
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Another pitfall regarding data leakage that we have to watch out for are markers that
reference the same seizure. As already explained, there are either one or two start markers
for each seizure. This leads to the question which marker should be considered as the
true marker for later calculation. When taking a closer look at the non-filtered markers,
we can see that professionals usually register a seizure based on the EEG signal first, if
both EEG start marker and video start marker are available. There is not any information
in our dataset about if a marker belongs to a certain seizure. Meaning that we have to
assume that a corresponding pair of start markers (EEG and video start marker) within a
conservative 5-minute time window refer to the same seizure event. This is the case for 93
seizure events in our dataset. Of those 93 seizure events, the EEG marker is entered before
the video marker in the timeline in 77 of those cases. Meaning that only in 16 cases the
video marker comes before the EEG start marker. Most important is the fact that the two
marker categories are usually not timed far apart. In the case where the EEG start marker
is the first one to arrive, the video seizure start is on average only registered 9.1 seconds
later. The other way round, when the video start marker is the first one to be entered, the
EEG seizure start event is timed 8.7 seconds later. This shows that choosing which marker
to pick as the actual initial starting reference for a seizure event is rather unimportant.
For the machine learning task later on, we will always pick the marker which is timed
as being the first one of a seizure event, this eases the process and also lets us use every
single marker in the dataset. Figure 4.6 also visualizes how seizure events are separated
based on the marker dataset.
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Figure 4.6: Overlapping seizure markers will be ignored.

For future experiments we also make sure that we offer a way to load markers based on
the seizure types, e.g. only train on data of seizures with motor onset.

Lastly, we need to filter all marker timestamps at which no VOC data has been recorded,
since it is not guaranteed that either a patient was wearing the Smell Inspector sensor at
all during their time in the hospital, as they were allowed to opt out of wearing certain
sensors, or that the sensors did have enough battery to record and send data.

After going through all these filtering steps we end up with valuable seizure markers from
20 different patients with half of them only having a single seizure during their stay as
can be seen in fig. 4.7.
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Figure 4.7: Number of seizures per patient after filtering.

In this implementation of the data analysis pipeline a configuration object needs to be
provided when loading the ictal markers. This facilitates an easier experimentation phase
in which a closer look can be taken on how different settings impact model performance.
Table 4.5 shows the options for loading the ictal markers. These options allow filtering
and later experimentation with certain seizures or marker types and will be treated as
hyperparameters in the grid-search being conducted in section 5.2.

Inter-ictal marker dataset

Almost as important as knowing the timestamps of the seizures themselves, is having
a reference baseline with no seizures, so that the distinction can be learned by a model.
Since a person with epilepsy is usually not experiencing a seizure, there has been plenty
of baseline data collected. The choice of which inter-ictal time windows of patients to pick
is not a trivial one and can impact model performance significantly. Choosing these inter-
ictal markers should therefore not be done at random. These markers are not manually
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Parameter Description
Exclude start markers Filter out all start markers (True/False)
Exclude end markers Filter out all end markers (True/False)
Seizure Types List of seizure types to include (e.g., [], [’Motor

Onset’, ’tonic’])
Marker Type List of marker types to include ("eeg", "video",

"all")
Overlapping allowed Treat overlapping markers as separate seizures (True/-

False)

Table 4.5: Configuration options for ictal marker loading.

created by medical professionals, so an algorithm for obtaining these baseline timestamps
has to be created.

The timestamp of an inter-ictal marker should not be too soon after a seizure has oc-
curred, because it is unknown how long seizure scents can linger. Another option is to
pick a timestamp leading up to a seizure as an inter-ictal marker. However, as [10] has
shown, VOCs can already be emitted one hour before the seizure, so the timestamp before
the seizure needs to be picked even earlier. Either way the inter-ictal marker needs to
be temporally removed from any other seizure, as to guarantee the best baseline data
quality.

While there are only a finite number of epileptic seizures, but virtually endless inter-ictal
time windows in the dataset, the proportion of inter-ictal markers to ictal markers in the
training dataset, i.e. the label balance, needs to be carefully picked. The topic of label
balance will be discussed in section 4.4.3.

Another distinction can be made by separating the origin of an inter-ictal marker. In our
study we had 51 people with epilepsy that did not experience a seizure during their time
in the hospital. Therefore, in our analysis, the percentage of inter-ictal markers obtained
from people with epilepsy that did not experience any seizures in the hospital can be
treated as another hyperparameter. Whether introducing data from patients without
seizures leads to an increase or decrease in performance needs to be studied. We have to
be aware that overfitting could become an issue when deciding against using data from
non-seizure patients, but for an initial proof of concept this could still deliver satisfactory
results.
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Algorithms for obtaining inter-ictal markers

Choosing inter-ictal timestamps for a person with epilepsy with recorded seizures should
be done reliably and reproducibly. Therefore, algorithms needs to devised to exactly
specify how inter-ictal timestamps are chosen. Since there are two types of patients to pick
inter-ictal markers from, patients with and without recorded seizures, two algorithms need
to be created. For patients with recorded seizures, their ictal markers serve as a reference
point to where the inter-ictal marker should be placed. For patients with no recorded
seizures a reproducible approach to choosing a time window needs to be manifested.

As the ratio of inter-ictal markers to ictal markers is an important hyperparameter that
can be varied (see section 4.4.3), the algorithms for obtaining inter-ictal markers need
to created in way where the number of required inter-ictal markers can be specified at
will, whether only 5 are needed or 1000 should not matter to the algorithms. On the one
hand this raises the question, which inter-ictal markers should be picked if the number
of required markers is low. On the other hand, what happens when the number of inter-
ictal markers required is too high, meaning that no more suitable time windows can be
found.

Both these problems will be addressed in the following sections.

As is the case with loading the ictal markers in the data analysis pipeline, a configuration
object also needs to be provided for loading the inter-ictal markers. Table 4.6 shows the
configuration options for loading the inter-ictal markers. It is important to note that the
ictal marker loading configuration is also needed for loading the inter-ictal markers, as
they are the reference points for creating markers for people with epilepsy with recorded
seizures, as will later become apparent.

Parameter Description
Number of markers Number of markers to be obtained
Percentage without recorded seizures Percentage of inter-ictal markers coming from

patients without recorded seizures
Hour offset for seizure patients Minimum hour offset from seizure for patients

with recorded seizures

Table 4.6: Configuration options for inter-ictal marker loading.
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One can notice that in while in table 4.6, the number of markers is required as an argument,
in table 4.5 it is not. As the number of seizures markers available is always fixed, there is
no need for any argument specifying the amount of markers required.

Patients with recorded seizures

As already mentioned, for patients with recorded seizures, the reference for every inter-
ictal marker is always an ictal marker. The important parameter in this case is a temporal
offset, defining how many hours the inter-ictal marker should be removed from a seizure
marker. This parameter can either be positive or negative, depending on whether the time
window should be before or after the seizure. While there is an initial ictal marker that
the inter-ictal marker is calculated on, it should be checked whether there is a possible
second seizure in proximity to the initial one. If the currently picked time window cannot
satisfy the temporal offset for both seizures in the timeline, another time window must be
picked.

In the case of a low number of required markers, it cannot be decided which datasets from
a participant should take priority over another. It would be possible to simply sort the
reference markers, i.e. ictal markers, by either the time they occurred or the EPILEPSIA
ID, and pick the first X number of markers. This would however certainly introduce bias
into the model. For this reason we will randomly sort the list of ictal markers with a set
seed, before looking for suitable inter-ictal time windows. The seed in this instance and all
later instance, where randomness will be introduced, will be 42.

While the initial temporal offset can be entered at will, the case where the number of
inter-ictal markers required is greater than the number of ictal reference markers needs
to be considered. A fixed temporal offset could at most only match the number of ictal
markers at a one to one ratio. Therefore, the temporal offset needs to be increased if not
enough time windows have been found yet.

Additionally, in the case of a high number of required markers, a safeguard is implemented
to not go into an endless loop. The combination of a high temporal offset parameter with
a high number of required markers could lead to a case where too few or no inter-ictal
markers can be created.

34



4 Approach

Patients with no recorded seizures

While there are fewer variables that need to be considered when trying to obtain inter-ictal
markers from patients without recorded seizures, a few of the same principles still apply.
As already mentioned before, for people with epilepsy that are not in the marker dataset,
there is no reference point from which a temporal offset can simply be applied.

As is the case with people with epilepsy with recorded seizures, the possibility of high or
low numbers of required markers need to be considered. For a lesser amount of required
markers than there are people with epilepsy without recorded seizures the choice will
again be made randomly with a set seed of 42.

Even more difficult than deciding which patients take priority, is deciding which time
window of the hospital stay should be picked. As there is no discernible difference in
value of the captured data, randomness with a set seed will be the best path forward.

In the case that the number of required markers of this category is greater than the
number of people with epilepsy without recorded seizures, the randomly sorted list will
be looped through until enough inter-ictal markers have been captured. Each time a new
randomly selected time window from the current person with epilepsy is added to the list
of inter-ictal markers.

4.3.2 Volatile organic compound dataset

As already briefly touched on in chapter 1 the sensor that has been used to collect data
is the Smell Inspector built by Smart Nanotubes. The original casing of the sensor has
been adapted to include a microcontroller and an additional battery to ensure longer
transmission periods before the sensor needs to be swapped out. The sensor was placed
near the armpit on a three point strap to capture as much critical VOC data as possible.
Additionally, a fan was built into the adapted casing to guarantee that air is constantly
flowing through the sensors. Figure 4.8 shows a picture of how the casing looked like.
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Figure 4.8: The Smell Inspector sensor used for VOC data collection.

At its core, the Smell Inspector incorporates four Smell iX16 multichannel gas detector
chips, each utilizing fine-tuned carbon nanomaterials as sensor elements. In total the
device captures VOC data in 64 different sensor channels.

When air flows over the sensor array, volatile organic compounds (VOCs) interact with
the surface of the nanomaterials, either through physical adsorption or weak chemical
bonding. These interactions alter the electrical properties of the nanomaterials, such
as their resistance or conductivity. Each channel responds differently, depending on its
specific surface treatment and the type of gas molecules it encounters. As every sensor
channel responds uniquely to different chemical compounds, a distinct signal pattern or
"smell fingerprint" for each odour is produced. These signal patterns are then processed
using machine learning algorithms to identify and classify the detected odours. [57]

While research previously done with the Smell Inspector showed promising results,
showed however that the detector chips may be prone to sensor poisoning over a couple
of months. Additionally, experiments to reproduce the same result, showed that scent
patterns recorded on different days showed relatively large differences. [58]

For data visualization and analysis, the Smell Inspector can be used in combination with
the Smell Annotator software. This software allows users to view and analyse real-time
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sensor data, annotate measurements, and store results for further analysis. For this use
case we need to work with the raw sensor data, since we do not want any other data
processing to interfere with the machine learning model training.

Gases and Volatile Organic Compounds Detectable by the Smell Inspector

Smart Nanotubes provides the following information, seen in table 4.7, on which gases
and VOCs are detectable with the Smell Inspector. The categories refer to the possible
limit of detection (LOD). An associated value of +2 means that detection of these VOCs
is possible even at low concentrations. A value of +1 means that the detectors are well
suited for detection and recognition, however only at a sufficient smell intensity. Gases
and smells with a value of 0 or even -1 should be avoided and are not detectable.

Table 4.7: Gases and smells detectable by the Smell Inspector.

Gases/Smells Category Comment
Ammonia (NH3),

hydrogen sulfide (H2S),
nitrogen monoxide (NO)

+2 Very low LOD
(<80 ppb)

Guaiacol, eugenol +2 Very low LOD
(33 ppb)

Phosphine gas
(PH3)

+1
Very low LOD (<10 ppb),

condensation of phosphor acid
on the detector surface

at high ppm concentrations
of phosphine

Hydrogen peroxide
(H2O2),

formaldehyde (CH2O),
carbon dioxide (CO2),

ethanol (C2H5OH),
toluene (C7H8)

+1
Reliably detectable,

however, at high-ppm
concentration levels

Continued on next page
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Gases/Smells Category Comment

Ketones (acetone,
butanone, . . . )

+1
Reliably detectable,

however, at high-ppm
concentration levels

Black tea leaves,
green tea leaves,

coffee beans, red wine,
orange juice, vodka,

chocolate, garlic, onion,
orange, banana, potato,

meat, fish, spoiled banana,
spoiled potato, spoiled meat,

spoiled fish

+1
Reliably detectable,

however, at high smell
intensity (like from
a closed package)

Water vapor
(H2O)

0
Detectors react

on the change of humidity,
can be compensated

by our software

Hydrogen (H2),
methane

0 Currently not detectable

All neutral gases
(nitrogen, argon,

helium, etc.)

0 Not detectable

Ozone
(O3)

-1
Can damage sensing

material at high
concentrations and/or

long exposure

Oil and polymer
vapors

-1 Can contaminate
detectors (no recovery)

Low temperatures,
high humidity

-1 Water condensation
on detector surface

Very high gas
temperatures

-1 Damage to detectors
at T>100 °C

Continued on next page
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Gases/Smells Category Comment

Any liquid -1 Cannot be used
for liquids

As discussed in chapter 3, through analysis of sweat samples collected from people with
epilepsy, some VOCs have been identified as possible early warning signs emitted by
humans before a seizure, most importantly menthone. As the Smell Inspector works
by identifying VOC through their unique fingerprint using different reactive, generic
chemical sensors, there is a possibility that menthone is well detectable by the sensor. Even
though menthone is not explicitly listed, it belongs in the mentioned group of ketones,
because it contains a carbonyl group. If the sensor reacts to common ketones, it would
likely react to menthone in the same way at high enough concentrations. Further analysis
regarding the chemical similarities between the VOCs detectable by the smell sensor and
the identified VOC menthone should be conducted in the future.

Preprocessing the Raw Smell Inspector Data

The schematic in table 4.8 shows the functionality of each channel. The term "raw data"
will refer to the actual unprocessed values that were recorded in the hospital and thereafter
stored in the InfluxDB. Channels with the same number respond to the same volatile
organic compound, meaning there is redundancy built into the sensor. Channels labelled
"999" are non-functional base-level channels which should not be taken into consideration
when analysing the raw data. In total there 19 non-functional channels and 54 functional
ones. Since there are 3 channels for each feature, this leaves us with 15 feature values for
each point in time.

Type Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8 Ch9 Ch10 Ch11 Ch12 Ch13 Ch14 Ch15 Ch16
Type 1 999 999 11 11 11 3 3 3 2 2 2 1 1 1 999 999
Type 2 999 999 999 999 999 9 9 9 6 6 6 5 5 5 999 999
Type 3 999 999 14 14 14 10 10 10 7 7 7 4 4 4 999 999
Type 4 999 999 15 15 15 13 13 13 12 12 12 8 8 8 999 999

Table 4.8: Schematic for all channels of the Smell Inspector.
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Analysis of Faulty or Missing Values

For all functional channels the recorded values should always range from zero up to
50000, according to the team at Smart Nanotubes. This means that any recorded values
over 50000 should be considered as faulty. Luckily, as there is redundancy built into the
sensor, we have multiple options on how to handle faulty values. One option would
be to simply take the mean of all three channels for each feature. For this to work it
needs to be ensured that the healthy data threshold of 50000 does not get crossed too
often or too heavily for it to negatively impact data quality. Figure 4.9 shows how many
times this happens for each feature for a single channel given a specific configuration.
The configuration used to download this specific dataset can be seen in table 4.9. Some
parameters seen in this table will be discussed only at a later point, but are included
here for completeness and reproducibility. All statistics that have been computed for
this section have been computed based on this configuration. While not completely
representative for all different configurations, it does paint a picture of how many data
points are usually missing.

Parameter Value Parameter Value
Pre-ictal label percentage 0.5 Exclude ends True

Inter-ictal label percentage 0.5 Seizure types []

Ictal label percentage 0 Marker type all

Post-ictal label percentage 0 Overlapping allowed False

Sample time window in seconds 600 Percentage no recorded seizure 0

Pre-ictal definition in seconds 300 Hours offset seizure patients 5

Post-ictal Definition in seconds 600

Hertz sampling rate 0.5

Exclude starts False

Table 4.9: Configuration with which faulty or missing values have been analysed.
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Figure 4.9: Amount of rows where the value of at least one channel of a feature exceeds 50000.

As is evident, it is often the case that a singular channel delivers faulty values. This leads
to the question of how much a single faulty channel value would skew the overall mean of
a feature. Figure 4.10 shows the average for each functional channel if the channel value is
greater than 50000.
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Figure 4.10: Average value for each functional channel when the value goes over 50000.

As can be seen from fig. 4.10 the mean value range for values over 50000 lays approximately
between 10 million and 1 billion. This would lead to an extreme skew when taking the
mean of three channels, given one channel is not working correctly.

Luckily taking the mean of all channels for a feature is not a necessity. Another approach
would be to take the mean of only the healthy values available. As there are three channels
for each feature, a single channel with valid data would be enough to work with. However,
even with redundant channels included in the sensor, it needs to be checked if in some
cases all channels of a certain feature deliver faulty values. Figure 4.11 shows how much
data needs to be completely discarded due to the fact that all channels of a feature show
values over 50000. Table 4.10 shows the exact percentages where even with redundant
channels the recorded data cannot be used.
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Figure 4.11: Amount of rows where the value of all channels of a feature exceed 50000.

Feature Value (%) Feature Value (%) Feature Value (%) Feature Value (%)
f1 1.53 f5 19.42 f9 20.03 f13 27.99

f2 4.47 f6 19.66 f10 23.34 f14 28.24

f3 2.98 f7 21.57 f11 28.40 f15 27.26

f4 6.57 f8 20.76 f12 26.54

Table 4.10: Percentage of unusable data for each feature.

Another statistic that is worth looking at is the distribution of faulty features between
positive and negative samples, i.e. ictal and inter-ictal samples, since the pool of negatives
samples can be chosen differently if too many features are missing. This is not the case for
the positive samples, since the ictal markers cannot be readjusted or other time windows
picked. Figure 4.12 shows the distribution of positive and negative samples for all cases
where all values of a feature are over the healthy threshold.
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Figure 4.12: Distribution of faulty data between positive and negative samples for completely
missing features.

Although some features have nearly 30 percent unusable data, it is important to analyse
the distribution of faulty data at the smell sample level, as the overall average does not
provide the full picture. If a significant portion or all features of a single smell sample (e.g.,
a 5-minute pre-ictal time window) are unusable, the sample must be excluded from the
training data. However, this exclusion is not necessary if the average applies uniformly
across all smell samples, as 70% healthy data would still be sufficient for our purposes.
Figure 4.13 illustrates the percentage of completely missing features for each sample,
sorted in decreasing order.
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Figure 4.13: Percentage of missing features for each sample in decreasing order.

As can be seen, there are only some instances in which the number of completely missing
features goes over 50%, which is not ideal. However, as we are already dealing with a
very low number of positive samples, we are not going to filter the training and test set
any further.

Handling Faulty or Missing Values

Whether features are completely faulty or only a few seconds worth of values are missing
from a 10-minute time window, the values need to be imputed in one way or another.
According to recent research there are two possibilities on how to handle faulty or missing
data. The first option is to use statistical imputation to correct faulty values and fill in
missing values. Imputation has been shown to result in good performance when the
missing or faulty data is hiding useful information. These performance increases have
been shown when working with categorical data [59]. It cannot be said with certainty that
the missing and faulty values hide any useful information in our case. Additionally, for
all cases where a feature is missing completely, i.e. there is not a single reference value,
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from a time window, all imputation methods will have to rely on data from other samples,
which can lead to lower data quality.

The other way to handle faulty or missing data is to explicitly denote in the dataset that
a certain value or a certain feature is missing or faulty. This can be done using one-hot
encoding, meaning that each feature gets a corresponding binary column which will
contain the value "1" if a correct value is present or a "0" if the value should be ignored.
However, this could lead to the model learning patterns about the missingness of certain
features, which would be counterproductive, since we are dealing with a MCAR (Missing
Completely At Random) problem. Research has shown that encoding missingness can be
helpful in cases where the missing data rate is high [60].

For our dataset there are two possibilities we will try out in the grid-search. Firstly, we will
try a statistical imputation approach to deal with missing data. In the case of a partially
missing feature, meaning there is at least a singular reference value in the time window, a
simple forward fill followed by a backward fill will be used to fill in the missing values
or overwrite the faulty values. More complex and accurate approaches could be taken if
the experimental analysis shows promise, but this is out of the scope for this thesis. In
all cases where there is not a single value that can be used for the forward and backward
fill, the mean of all values, including other samples, for that feature will be used. This is a
safer approach than simply capping the values at 50000, since this could skew the data.

With the second approach that will be tried we will replace all faulty values with the value
negative one. The reasoning behind this being that with enough data the model could
infer and learn that -1 means that this value can safely be ignored. It cannot be said with
certainty which one of these approaches is better suited for this use-case, which is why
they will both be tried out in the grid-search.

Additional metrics

Since our marker dataset is relatively small we need to incorporate as many data points
for each seizure so that a machine learning model can still function effectively. For each of
the 15 feature channels we calculate the standard deviation, variance, mean, maximum
and minimum over a 20 timestamp range. The timestamp range depends on the sampling
rate in which we load the data into a model. For example, if we load the data at a 0.2 Hz
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sampling rate, meaning one row of data each 5 seconds, the range over which the metrics
are calculated is 100 seconds. This hyperparameter optimization will further be elaborated
on in section 4.4.2.

This results in a maximum of 97 columns of values for each recorded time step for a single
patient, including time of day information alongside features and metrics. Deciding which
metrics to include in the model is treated as a hyperparameter. While standard deviation
and variance are considered essential features to include in the dataset, adding maximum,
minimum, and mean features for each channel may negatively impact results if the data is
overly skewed. Therefore, during the grid-search, models will be trained both with and
without the maximum, minimum, and mean features to evaluate their impact.

Normalization of Values

Working with a normalized set of values can improve machine learning performance [61],
which is the reason why we will apply Z-score normalization (see eq. (4.1)) on a global
and not patient-specific level. As there have already been additional metrics calculated,
we are working with a hybrid approach to capture information on both a global and
patient-specific level. The Z-score of a value indicates how many standard deviations the
value is from the mean of the dataset. The formula for calculating the Z-score of a value x
is given by:

z =
x − µ

σ
(4.1)

where:

• x is the value to be normalized,

• µ is the mean of the dataset,

• σ is the standard deviation of the dataset.

By applying Z-score normalization, the transformed data will have a mean of 0 and a
standard deviation of 1.
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Removing outliers

Per default, our processing pipeline for the grid-search will remove any outliers before
calculating any other feature, to ensure that any skew in the data remains minimal. This
happens even after capping the data according to the healthy data threshold, which for our
grid-search will be 50000. The threshold might not remove all outliers, which is why the
top two percent of each channel will be disregarded and later calculated again according
to the missing value logic described in section 4.3.2.

4.3.3 Data structure

All the following analysis and model-based classification has been done using SKTime [62],
which provides a unified interface for time series machine learning tasks. Additionally,
SKTime is equipped to handle multivariate time series data, where multiple variables are
observed over time. Training a model using SKTime requires the data to be in a specific
format. In the following the structure and format of input and target values are going to
be discussed.

Input values

As many other machine learning frameworks, SKTime uses the data-container library
Pandas [63] under the hood. For this reason, the SKTime requires the input data to be
provided in a Pandas multi-index. There are other options, such as a NumPy [64] 3D array,
but these come with small drawbacks as per the documentation.

The multi-index in our case has two levels. The first will represent a sample level, cor-
responding to a specific continuous time window, e.g. 5 minutes, of a singular patient.
There can be multiple samples of the same study participant at the first level. For example,
for model training purposes we could use one pre-ictal sample and one post-ictal sample
of the same person with epilepsy. On the second level we have the time index containing
timestamps, which will always be roughly equidistant to one another. It is important
to note, that for each sample the number of timestamps provided needs to be same. To
simplify the data, the timestamp will only contain the number of seconds passed in that
particular day, as machine learning frameworks typically cannot work with non-numerical
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input data. It is not necessary to denote the timestamp in milliseconds as the smell sensor
recorded data in the 0.55 hertz range. Correctly specifying the time of day can be of value,
as SKTime also considers the value of the time index as a feature to learn from. The actual
date on the other hand can be disregarded, as nothing can and should be learned from
the date itself. The time index can be arbitrarily long and granular, meaning later we will
try to optimize between different time windows and aggregate values. Table 4.11 shows
an example of how the training data would look like. The real training data of course
has between 60 and 97 columns depending on which features should be included in the
model. Within these columns the raw VOC data and calculated features based on the raw
data, such as variance and rolling averages, are contained.

Sample index Seconds of day Feature 1 Feature 2 Additional Feature

0

42331 41051 12566 1.385
42333 41055 12570 1.322
42335 41062 12568 1.334

...
42627 41231 12407 1.385

1
3012 20392 31828 -0.021
3014 20385 31799 -0.023
3016 20380 31789 -0.025

...

Table 4.11: Structure of the pandas multi-index as input data.

In the case of missing values for a specific time step, the techniques described in sec-
tion 4.3.2 will be used. Models cannot be fitted onto input values with non-numerical
values, so it is necessary to ensure every row and column contain a value.

Target values

As we are working with a supervised approach, we need target values in addition to the
input data, from which a model can learn. These target values will correspond to the
sample index of the training data and therefore label the sample correctly. There are two
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options on how the training data can be labelled. Firstly, a differentiation could be made
between four states:

• pre-ictal

• ictal

• post-ictal

• inter-ictal

or simply between two states:

• pre-ictal

• non-pre-ictal

For our use case it is more effective to simply train the model on the binary label, only
distinguishing between pre-ictal and non-pre-ictal states. Further reason on why a binary
classification suffices, is the lesser importance of being able to tell apart the other states.
Having the current end goal in mind, only the correct prediction, i.e. the pre-ictal state,
would make a meaningful difference.

Of course from a research perspective, it would be of interest if a model could be trained
that can distinguish between each of the states. Although, the problem could arise that
a combination of VOCs, that the model learned are predictors for a seizure, could leak
into the other phases. Meaning that the critical VOC combination could still be in the
air during the post-ictal state, making a distinction between pre- and post-ictal states
difficult.

Table 4.12 shows the simple array of target values that is subsequently provided to the
model.
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Sample index Label
0 pre-ictal

1 pre-ictal

2 non-pre-ictal
...

263 non-pre-ictal

Table 4.12: Structure of the target values dataframe.

Meta-data structures

For later data split and analysis purposes we use a third data structure that gives some
additional information about the samples. Table 4.13 shows a few example rows of the
information we are storing. There is reason to suspect that certain data splits containing
only EEG markers or only a certain type of seizure might result in a better performing
model, which is why this meta information is included in further analysis. This array does
not however get passed into the framework, i.e. this is not information that is going to be
learnt from.

Sample index Epilepsia ID Type Marker

0 XY5FE5
Focal Onset - Aware -

Nonmotor Onset - autonomic
EEG

1 XY5FE5
Focal Onset - Aware -

Nonmotor Onset - autonomic
EEG

2 CEU856
Focal Onset - Aware -
Motor Onset - tonic

Video

...

263 NV46I0
Focal Onset - Impaired Awareness -

Motor Onset - automatisms
EEG

Table 4.13: Dataframe storing the meta-data of samples.
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4.4 Hyperparameter

As already touched on in some previous chapters, when training a model to accomplish
the task of predicting epileptic seizures, there are a lot of possible hyperparameters that
can be adjusted to improve the resulting performance. Finding well performing training
data related hyperparameters, i.e. what information is being feed into a model, is in our
case even more impactful than tweaking model-specific hyperparameters.

Model-specific hyperparameters will not be discussed in this chapter, but rather in their
respective sections in section 5.2.

Many hyperparameters have already been introduced in section 4.3. To give a final
overview over all possible hyperparameter, including new ones from this chapter, a
summary will be shown in section 4.4.4.

Figure 4.14 shows which classical hyperparameters need to be determined before a grid
search can be conducted.

Determining
optimal time

window length

Determining
optimal label

balance

Determining
optimal training and

test split

Determining
optimal sampling

rate

Figure 4.14: Overview of the steps to determine hyperparameters within the pipeline.

4.4.1 Time window length

Optimal time window length for prediction of epileptic seizures is a well researched
subject, even though most research has been done using EEG signals, not with VOC data.
There is a consensus that the optimal prediction window for pre-ictal states lies between
10 and 60 minutes. While [65] states that the optimal pre-ictal time window varies greatly
from patient to patient, this optimization is out of scope for this thesis. For most cases a

52



4 Approach

time window of 30 minutes was deemed as the best option for training machine learning
models [66, 67].

One important pitfall one has to avoid when trying to predict seizures is label poisoning,
meaning that we strictly want to classify the time before the seizure as pre-ictal. This
means that any overlap between these periods and the ictal period should be avoided
to prevent label poisoning. Therefore, a buffer period should be introduced before each
seizure marker to ensure that the pre-ictal markers are not contaminated by ictal states.
For our purpose we introduce a buffer period of X seconds before each marker to strictly
separate pre-ictal and ictal data. This X can be chosen at will in the grid-search, since the
exact amount of buffer time needed is not known. We will vary the buffer time between 2,
5, 10 and 30 minutes to assess which models trained with different buffer times achieve
the best results.

4.4.2 Sampling rate

Sampling rate is in our case defined as the time between recorded values. It is inherently
limited by the sampling rate of the Smell Inspector itself, which is about 0.55 Hz or 1.8
seconds between recorded values. Any value higher than 0.55 Hz would provide no
extra information when downloading the data from the Influx DB. A lower sampling rate
would mean that we can feed longer time windows into a machine learning model without
actually using every single value but averaging values over a certain time period.

There is some evidence that lower sampling rates suffice for many machine learning tasks.
This research was concerned with classifying physical activity and detecting falls, using
an accelerometer with sampling rates between 25 Hz - 100 Hz. While a higher sampling
rate was used in this case, the analysed time window was consequently shorter [68, 69].
The same trend could possibly be observed for our use case, where lower sampling rates
would achieve better or equal results if the analysed time window is long enough. The
only problem with this assumption would be that it is not certain whether just stretching
out the analysed time window would also lead to better results. If the critical changes in
the VOC data only occur a few minutes before the start of the seizure, enlarging the time
window would only include more noise into the analysed sample.

53



4 Approach

For this reason, as we are already on the lower end of resolution for machine learning tasks,
a sampling rate of 0.5 Hz will be used, meaning one row of values every two seconds,
therefore slightly undersampling the original data, but essentially not aggregating any
data points together.

4.4.3 Label balance

Ensuring a balanced ratio of positive to negative labels is crucial for achieving good model
accuracy. A 1:1 ratio is generally considered ideal for our evaluation, as it minimizes bias
towards the larger class and promotes a more generalized model that performs well on
both classes [70]. However, there are exceptions to this rule. For instance, random forest
models can sometimes perform better with a higher ratio, such as 1:10 [71]. While tech-
niques like over- and undersampling can be used to balance datasets, we have sufficient
positive and negative labels available, making it unnecessary to use such methods.

For our further evaluation we will go with the conservative approach and try to keep it
as close to a 1:1 ratio of positive and negative labels as possible. What will need to be
investigated when experimenting with model evaluation later on, is how strongly the
choice of which negative labels are picked, affects the models’ performance. For positive
labels, there is no other choice than to work with the markers that have been given to
us by experienced doctors (disregarding smaller hyperparameters, such as choosing the
exact time window based on the ictal marker). As already discussed in section 4.3.1,
there are more inter-ictal markers available than ictal markers. This leads to the question,
which inter-ictal markers should be used when the label ratio should not be skewed too
much. One approach might be that for every ictal marker, i.e. every positive example,
a complementary negative example from the same patient is used. If the performance
shows promise using this approach, it would be the ideal scenario as it would showcase a
clear difference between the pre-ictal state and the inter-ictal state in the VOC data. Using
this approach, it needs to be tested whether it is better to pick an inter-ictal marker leading
up to the seizure, e.g. 3 hours before, or some time after the seizure has ended.

Other approaches might include inter-ictal markers from patients with no recorded
seizures. This could however lead to the model becoming biased towards learning that
some patients never have positive labels.

54



4 Approach

Since our grid-search will be conducted using a time-series specific CNN, a 1:1 ration is
ideal and will be used in the search. No other configurations regarding label balance will
be tried out, since varying other hyperparameters instead seems more promising.

4.4.4 Summary of all possible hyperparameter

Being at the end of this chapter, all hyperparameter and their possible values seen in
section 4.4.4 have now been thoroughly discussed.

Hyperparameter Data Type

Marker Type List of Strings
Seizure Types List of Strings
Overlapping Markers Allowed Boolean
Exclude Seizure Start Markers Boolean
Exclude Seizure End Markers Boolean
No-Seizure Data Percentage Float
Hour Offset For Inter-Ictal Markers Integer
Pre-Ictal Label Percentage Float
Inter-Ictal Label Percentage Float
Ictal Label Percentage Float
Post-Ictal Label Percentage Float
Sample Time Window Integer
Pre-Ictal Definition Integer
Post-Ictal Definition Integer
Sampling Rate Float
Faulty Data Value Cut-off Integer
Add Normalized Features Boolean
Remove Raw Features Boolean
Additional Features List of Strings
Missing Value Strategy String
Add Time of Day Feature Boolean
Remove Top Percentile (Outliers) Integer
Train-Test Strategy String

Table 4.14: All hyperparameters that will be considered in the grid-search.

Marker and seizure types refer to the corresponding strings we received from the medical
staff. Overlapping markers and the impact of allowing them has been explained in
section 4.3.1. Excluding seizure start and end markers have been added as options, since
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depending on the experiment one only wants to work with a certain type of marker.
No-Seizure Data Percentage refers to the amount of inter-ictal samples from patients with
no recorded seizures that should be included in the input data. The rest of inter-ictal
samples will come from patients who experienced a seizure in the hospital. The hour offset
describes the minimum amount of time that should have passed since the last seizure for
the inter-ictal marker to be valid. The label percentages in summation need to be equal
to 1. Sample time window and pre-ictal definition as well as sampling rate have been
explained in the sections above. Faulty data value cut-off describes the limit where a value
from the database is still considered healthy. The missing value strategy describes the way
missing or faulty values should be handled with the options being mean and negative-one
as per section 4.3.2.

Additional features that should be calculated based on the raw features should be provided
in an array of strings. Even though more training data and features is usually welcomed,
the removal of the raw features captured by the sensor is treated as a hyperparameter.
It is not clear whether including the raw values in the training data might not mislead
the model during training. The same goes for adding the normalized values of each
feature. Since there is no literature on our specific use case, each combination of these two
hyperparameter will be tried out during the grid-search.

The time of day feature will always be included in the training data, since we see no reason
why any variation would make sense for the grid-search. The same is the case for the top
percentile removal, which will be fixed at two percent.

Now it is time to discuss the last hyperparameter, which is also already included in
section 4.4.4, the training and test split.

4.5 Training & test split

There still remains the question on what part of the input data the training should happen
and which part should serve as a testing set of samples. In this chapter, we will discuss the
methodology used to split the dataset into training and testing sets, ensuring that every
model is evaluated on unseen data to provide an unbiased estimate of its performance.
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There are multiple ways to split up data, each with their own positive and negative effects.
The aspect of how the model is going to possibly used in the future also needs to be
considered. It is clear that a random training test split would lead to data leakage, which
is why this method will not be discussed or considered.

4.5.1 Leave one patient out (LOPO)

Leaving one or multiple patients out of the dataset is beneficial if the generalization of
a model should be prioritized. In fact, a great portion of recent research on the topic
has been done using the LOPO strategy [72, 73]. While performance might take a hit,
LOPO is the only way to determine whether a completely unseen patient can rely on the
accuracy of the model. In the context of EEG based seizure prediction Shafiezadeh et al.
used a patient-based split to show that cross-validation does not automatically lead to
good generalization of a prediction model [74]. However, the performance of LOPO can
vary significantly depending on the patient or patients held out. Some patients might
have more complex seizure data, leading to less consistent results.

The problem we see in our case with LOPO is that preliminary results already showed that
the task at hand is a difficult one. Our goal is to simply check the feasibility of working
with VOC data when it comes to epileptic seizures. Achieving good results with the LOPO
strategy would go beyond what we are trying to achieve and is therefore out of the scope
for this thesis.

4.5.2 Temporal split

Temporally splitting up the data means using the last seizure of a patient with multiple
seizures as a testing seizure on which the model performance can be evaluated. While
[75] discusses a different topic, it is clearly being stated that a temporal split is common
for time series machine learning tasks. One major advantage of a temporal split would
be that it mimics real-world scenarios where past seizure information could be used to
predict future ones. It also respects the chronological order of data, which is particularly
important for time-sensitive patterns, as it avoids any future data leaking into the training
process. Temporal splits can capture evolving trends in seizure patterns within a patient,

57



4 Approach

especially if there are gradual changes over time due to factors like medication or other
adjustments.

However, temporal splits have their drawbacks. One issue is that the training data might
not include enough variability if the earlier data does not fully represent the range of
seizure patterns the patient experiences. If the distribution of seizures changes significantly
over time, the model trained on older data may struggle to generalize to new patterns in
the test set. Temporal splits also require sufficient data across time to work effectively. Only
seizures of patients with multiple recorded seizures could be picked as part of the training
set. While half of patients did experience more than one seizure if they experienced any at
all, this issue needs to be addressed. For training purposes the data from patients who
only experienced a single seizure can be used, but these seizures cannot be in the test set,
since we want to ensure that every patient has been seen before by the model.

In summary, this approach is less useful for generalizing across patients, as it focuses on
within-patient predictions. As we have to factor in that there is already a high variance
and bias in our current dataset using a temporal split would ease the task at hand. It is
not our goal to build a fully robust machine learning model that can generalize across
patients without problems. For that reason, in the evaluation later, we will train on the
last seizures of patients. To be exact, the last 30% of seizures (rounded to the lower whole
number) will be used for the testing set.
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As with all other chapters fig. 5.1 shows the final steps that need to be taken to finally
arrive at a result. Firstly the right performance metrics for the task need to be determined.
With these performance metrics in mind the grid search and therefore all 576 models can
finally be trained and evaluated. Thereafter, the aggregated results and additionally the
results of the best performing models will be highlighted. Finally, as we need to make
sure the performance of the best model is not just based on spurious correlation, extensive
robustness checks of the model will be performed.

Determining valid
performance

metrics

Analyze best
performing model
and its predictions

Test robustness of
best performing

model

Analyze overall
results of all trained

models

Figure 5.1: Overview of the evaluation steps within the pipeline.

5.1 Performance metrics

As we will be evaluating a multitude of models with different hyperparameters, we need
a way to assess these models. While the list of possible performance metrics is endless, we
have to make a consideration which metrics are most suitable in this context [76].
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When trying to predict epileptic seizures a low false negative rate is of utmost importance.
Missing an imminent seizure could have fatal consequences for people with epilepsy. For
this reason, especially metrics that capture the rate of false negatives will be included in
our comparisons.

Following are the performance metrics that will be used and their definitions. The liter-
ature accepts these metrics as generally useful when evaluating models, especially in a
medical context [77, 78]. While some metrics may be more important than others for this
use case, neglecting others can lead to overall worse practical results, e.g. recall of 1 could
also mean that everything has been classified as a pre-ictal phase.

For all following formulas the following abbreviations are used.

• True Positives (TP): The number of positive samples correctly classified as positive.

• False Positive (FP): The number of positive samples incorrectly classified as positive.

• True Negatives (TN): The number of positive samples correctly classified as nega-
tive.

• False Negatives (FN): The number of positive samples incorrectly classified as nega-
tive.

5.1.1 Accuracy

Accuracy is a metric that measures the proportion of correctly classified samples (both
positive and negative) out of the total number of samples. Accuracy can be calculated
using the following formula.

Accuracy =
True Positives (TP) + True Negatives (TN)

Total Number of Samples
(5.1)
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5.1.2 Recall

Recall, also known as sensitivity or the true positive rate, is defined as the proportion of
actual positive samples that are correctly identified by the model. Recall can be calculated
using the following formula.

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
(5.2)

5.1.3 Precision

Precision, also known as Positive Predictive Value, is defined as the proportion of predicted
positive samples that are correctly identified as positive by the model. Precision can be
calculated using the following formula.

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
(5.3)

5.1.4 F1 Score

The F1 Score is the harmonic mean of Precision and Recall, providing a single metric
that balances both the Precision and Recall of a model. It is particularly useful when the
dataset is imbalanced. The F1 Score can be calculated using the following formula.

F1 Score = 2 · Precision · Recall
Precision + Recall

(5.4)
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5.1.5 ROC AUC

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) is a metric
that evaluates the ability of a model to distinguish between classes at different thresholds.
It is calculated as the area under the Receiver Operating Characteristic (ROC) curve,
which plots the True Positive Rate (Recall) against the False Positive Rate (FPR) at various
threshold settings.

The ROC AUC score ranges from 0 to 1, with a value of 1 indicating perfect performance,
0.5 indicating no differentiation (equivalent to random guessing), and values below 0.5
indicating worse-than-random performance.

ROC AUC =
∫︂ 1

0
TPR(t) dFPR(t) (5.5)

Where:

• TPR(t): The True Positive Rate (Recall) at threshold t, calculated as TP
TP+FN .

• FPR(t): The False Positive Rate at threshold t, calculated as FP
FP+TN .

• t: The decision threshold used to classify positive and negative samples.

5.2 Evaluation

Now that all necessary hyperparameters have been defined and thoroughly discussed,
we can start looking at how differently configured models perform with the data that has
been captured and preprocessed in the EPILEPSIA study. In preliminary experiments it
has become evident that the most impactful factors are the data-related hyperparameters
and not any model-specific hyperparameters. In addition, these experiments showed that
it is not easy to find optimal hyperparameters that result in convincing performance of
a model. To maintain reproducibility and not miss any well performing configuration
of hyperparameters a custom implementation of a grid search algorithm will be used.
After taking a closer look at the results of the grid search, the impact of the varied
hyperparameters will be assessed.
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5.2.1 Parameter Grid

After having thoroughly dissected each and every hyperparameter that could affect the
ability to predict seizures beforehand, it is now time to select ranges in which a grid
search should be performed. This simple approach enables us to try out each and every
combination of hyperparameters, to see where the potential of seizure prediction lies. The
selection of value ranges needs to be handled carefully as too many combinations will
lead to an unreasonably long model training time. Table 5.1 shows each option that will
be tested with the given model. The number of possible combinations for this parameter
grid is 576, i.e. 576 differently configured CNN models will be trained and tested. Having
prioritized the more impactful hyperparameters, this is right on the edge of acceptable
runtime while also exploring as many options as possible.

The focus of our grid-search laid heavily on the exact timing of the time windows that
are to be picked, since we saw the most potential in this category of hyperparameters.
Previous chapters should provide the detailed reasoning to why certain value ranges were
chosen. The most important decisions will be highlighted here again.

We made no discrimination between different seizure types or the origin of the marker.
While it may be possible to correctly predict seizures easier for some seizure types, we
wanted to test if a generalized approach is possible.

No inter-ictal markers from patients without any recorded seizures were included in the
grid search, in preliminary experiments it has shown that the VOC profiles of patients
differ heavily, to the point where the model learned the differences in the VOC profiles
themselves and not the temporary seizure.

The choice which time window to pick for inter-ictal markers, originating only from
patients where there is also seizure data available, has been limited to either 5 hours
before, 5 hours after or 10 hours after the seizure. In further experiments this time range
could be increased even further, away from any lingering seizure scents.

As already explained we will limit the grid search to training on binary labels, no data
from ictal or post-ictal phases will be included in the training.

With the variation of sample time windows and also offset from the seizure itself (pre-ictal
definition), we wanted to test the impact different time windows have on the results.
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Parameter Values

Marker Type All
Seizure Types All
Overlapping Markers Allowed No
Exclude Seizure Start Markers No
Exclude Seizure End Markers Yes
No-Seizure Data Percentage 0%
Hour Offset For Inter-Ictal Markers {-5, 5, 10} hours
Pre-Ictal Label Percentage 50%
Inter-Ictal Label Percentage 50%
Ictal Label Percentage 0%
Post-Ictal Label Percentage 0%
Sample Time Window {5 min, 10 min, 20 min}
Pre-Ictal Definition {2 min, 5 min, 10 min, 30 min}
Post-Ictal Definition 10 min
Sampling Rate 0.5 Hz
Faulty Data Value Cut-off 50,000
Add Normalized Features {Yes, No}
Remove Raw Features {Yes, No}
Additional Features {[Standard Deviation, Variance],

[Standard Deviation, Variance, Mean, Max, Min]}
Missing Value Strategy {Negative One, Mean Imputation}
Add Time of Day Feature Yes
Remove Top Percentile (Outliers) 2%
Train-Test Strategy Last Seizures

Table 5.1: Grid-search parameters. Values in curly brackets have been varied in the grid-search.

We wanted to check whether including normalized features might help the model learn,
which is why adding normalized features as well as removing raw features will be tested
in the grid search. For the additional features that are added in each model test, we always
include the standard deviation and variance, but also try adding the mean, minimum and
maximum in half the tests.

For the missing value strategy taking the mean value imputation of a feature as well as
the negative one strategy will be tried out.

Lastly, we vary the trained models by trying out the random train and test split as well
as the custom split which is described in section 4.5, where we train on the first 70% of
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seizures and test on the last 30%. This surely simplifies the testing for all models, but as
the goal of this grid-search is a preliminary proof of concept, we think it is appropriate
to split up training and testing data like this. In addition, a product capable of detecting
seizures beforehand could also behave similarly. It would also learn from all previous
experienced seizures, in addition to the ones already learned during training, and try to
predict on all upcoming seizures.

5.2.2 Choice of classifier

We are limiting the scope of this research to the functionality of the SKTime library.
Specifically their implementation of the CNN classifier described in [14]. While SKTime
offers multiple classifiers that can handle multivariate data, like we have in our case, we
wanted to focus this work on the grid-search and optimization of hyperparameters. The
reason for selecting the CNN classifier is its ability to handle multivariate time series
data effectively and its proven performance in similar tasks. The architecture of CNNs
allows them to capture spatial and temporal dependencies in the data, which is crucial
for accurate seizure prediction. Additionally, the implementation in the SKTime library is
well-documented, provides a user-friendly interface and is optimized for performance,
making it a suitable choice for our experiments. Models like LSTM and transformer
models are more complex and resource-intensive, which is why they were not chosen for
this analysis. Given the preliminary nature of our proof of concept, we opted for a model
that balances performance with computational efficiency.

The Convolutional Neural Network (CNN) classifier is configured with several default
settings that influence its training and performance, which have not been changed for the
grid-search. The setting that has been used for the grid-search is written in the bracket.

• Number of Epochs (2000): The number of epochs for which the model will be trained.
A single epoch is one complete pass through the entire training dataset. More epochs
can lead to better results but may also increase the risk of overfitting.

• Batch Size (16): The number of samples that will be propagated through the network
at a time. Smaller batch sizes can provide more accurate updates but may require
more iterations to complete an epoch.
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• Kernel Size (7): The size of the convolutional kernel (filter). A larger kernel size can
capture more spatial features but may also increase computational complexity.

• Average Pool Size (3): The size of the window for the average pooling operation.
Average pooling reduces the dimensions of the input, helping to decrease the number
of parameters and computation necessary.

• Number of Convolutional Layers (2): The number of convolutional layers in the
network. More convolutional layers can capture more complex features but may
also increase the risk of overfitting and computational cost.

• Loss Function (Categorical cross entropy): The loss function used to optimize the
model. Categorical cross entropy is commonly used for classification tasks where
the output is a probability distribution between classes.

• Activation Function (Softmax): The activation function used in the output layer. The
softmax activation function is typically used for multi-class classification problems
as it converts the output logits into probabilities, but is just as useful when working
with a binary classification task.

• Optimizer (Adam, Learning Rate = 0.01): The optimizer used to update the model’s
weights. The Adam optimizer is an adaptive learning rate optimization algorithm
that combines the advantages of two other extensions of stochastic gradient descent.
The learning rate is set to 0.01.

5.2.3 Overview of Grid Search Results

When looking at the average results of all 576 trained models, the difficulty of the goal
we are trying to achieve becomes clear (see table 5.2). Even at the 75% percentile only an
accuracy of 55% can be achieved. While this may seem low, it is important to consider the
complexity of seizure prediction and the variability in the data. The precision and recall
metrics also show a wide range of performance, indicating that some models are better at
identifying true positives, while others may have a higher rate of false positives.

The mean ROC AUC score of 0.52 suggests that the models are only slightly better than
random guessing on average. However, the maximum ROC AUC score of 0.77 indicates
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that there are some configurations that perform significantly better. This highlights the
importance of hyperparameter tuning and the potential for further optimization.

Metric Mean Std Dev Min 25% 50% 75% Max

Accuracy 0.52 0.09 0.23 0.45 0.50 0.55 0.77
Precision 0.45 0.25 0.00 0.36 0.50 0.58 1.00
Recall 0.43 0.33 0.00 0.09 0.41 0.73 1.00
F1 Score 0.40 0.25 0.00 0.15 0.44 0.62 0.81
ROC AUC Score 0.52 0.09 0.23 0.45 0.50 0.55 0.77

Table 5.2: Statistics across all 576 models.

These results underscore the challenges in developing a robust seizure prediction model.
The variability in performance metrics suggests that certain hyperparameter configura-
tions are more effective than others. Future work could focus on narrowing down the
most promising configurations and exploring additional features or model architectures
to improve performance.

Figure 5.2: Distribution of model accuracy.
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The results of the grid search show that the accuracy of the models follows a normal
distribution, as depicted in Figure 5.2. This means that most models achieve accuracy
close to the average, with fewer models performing significantly better or worse. The bell-
shaped curve highlights the consistency in performance across the tested hyperparameter
configurations and emphasizes the importance of hyperparameter tuning, as even small
adjustments can lead to noticeable improvements in model performance.

5.2.4 Linear Correlation Analysis of Hyperparameters and Performance

Figure 5.3: Correlation between hyperparameters and performance.

The correlation matrix seen in fig. 5.3 gives us insight into how different hyperparameters
influence model performance metrics. When reading the heatmap a positive value, also
indicated with colour, shows a correlation to a higher value in the performance metrics
when the hyperparameter is increased. In most cases the varied hyperparameters were
integers, meaning an increase can be easily understood. In those cases where the hyper-
parameter was either an array of strings or a boolean value, another approach has to be
taken. For example the hyperparameter features_to_add, indicated which features should
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be added to the dataset. Since an array of strings can hardly be displayed in a correlation
heatmap, the length of the array has been used as input for the heatmap. Therefore, we
can notice that a longer array of features to be added positively impacts all performance
metrics.

For other hyperparameters a single string value was used, for example the missing value
strategy. In this case, all possible values of the string have been split into different rows
and converted to boolean values. Boolean values can traditionally be displayed as either
0 for false or 1 for true, which again gives us an integer value to work with, which can
be displayed in the heatmap. For example, it impacts the performance metrics positively
when the missing value strategy of taking the mean is increased. Meaning, the value is
increased from 0 to 1 or in other words in switched from false to true. The same principle
can be applied to all hyperparameters that have been converted to boolean values for the
sake of visualizing the correlation.

Overall, most hyperparameters show only slight correlations with these metrics, indicating
that their effects might be more complex and dependent on interactions rather than direct
linear relationships. However, some patterns stand out.

One notable observation is that the pre-ictal definition in seconds has a small but noticeable
negative correlation with recall (-0.17) and F1-score (-0.13). This suggests that as the pre-
ictal period increases, the ability of the model to correctly identify seizures decreases. This
could be due to longer pre-ictal periods introducing more noise, making it harder for the
model to distinguish between pre-ictal and non-pre-ictal states. Since recall is directly tied
to F1-score, we see a similar drop in F1 as well.

Similarly, sample time window in seconds shows a small negative correlation with ROC
AUC score (-0.15). This might indicate that larger time windows introduce variability that
reduces the models’ ability to differentiate between classes effectively. If the time window
is too broad, the model might struggle to detect meaningful patterns that contribute to
classification performance. This goes against what has been shown in previous research
using EEG data, where a 30 to 60-minute time window has been proven optimal.

Interestingly, the inclusion of additional normalized features and removal of raw fea-
tures appears to have almost no significant correlation with performance. This suggests
that normalizing features or removing raw data does not drastically change the models’
behaviour linearly, though it might still have nonlinear effects.
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We can make another interesting observation from the missing value strategy. The strategy
of taking the mean of a feature in case of missing values shows a slight advantage, leading
to an improvement of 0.09 in the F1 score compared to imputing negative one. This
indicates that mean imputation might be a more effective approach for handling missing
values in this context, though its impact could still depend on specific datasets and
interactions with other hyperparameters.

Overall, while no hyperparameter shows a strong, direct relationship with performance,
the small negative correlations with pre-ictal definition and sample time window suggest
that optimizing these parameters carefully could lead to marginal improvements in recall
and AUC. The weak correlations across the board also highlight that performance likely
depends on complex interactions rather than single hyperparameters alone.

Metric Top 10% Bottom 10%

Accuracy 0.68 0.37
Precision 0.68 0.25
Recall 0.77 0.27
F1 Score 0.69 0.25
ROC AUC Score 0.67 0.37
Add Normalized Features 0.56 0.56
Features to Add Length 3.79 3.58
Hour Offset Seizure Patients 1.84 3.16
Pre-Ictal Definition (seconds) 570.53 702.11
Remove Raw Features 0.37 0.44
Sample Time Window (seconds) 642.11 810.53
Missing Value Strategy (Mean) 0.51 0.51
Missing Value Strategy (Negative one) 0.49 0.49

Table 5.3: Hyperparameter trends for high and low performing models.

The table in table 5.3 highlights the trends in hyperparameters for the top 10% and bottom
10% performing models. Interestingly, the inclusion of normalized features does not show
a significant difference between high and low performing models, suggesting that this
factor alone does not drastically impact performance.

The length of features to add is slightly higher in top-performing models, indicating that
a richer feature set might contribute to better performance. The hour offset for seizure
patients is lower in top-performing models, suggesting that a smaller offset might be
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beneficial. Similarly, the pre-ictal definition and sample time window are shorter for
top-performing models, which aligns with the earlier observation that longer periods
might introduce noise and reduce model effectiveness.

The strategies for handling missing values do not show a significant difference between
high and low performing models, indicating that the choice between mean imputation
and using a negative one placeholder does not have a strong linear impact on performance.
Overall, these trends provide valuable insights into which hyperparameters might be
fine-tuned to achieve better model performance.

5.2.5 Identifying the best model

Having completed training and testing of one model type leaves us with metrics and
results for 576 differently configured models. The best performing model does not neces-
sarily need to be the best in every category. While accuracy and precision may be high for
some model, it may lack in the recall metric. For this use case we deem the best model
to be the one with the highest accuracy since we value overall correctness of the model.
While in this context one could argue that it is more important to not miss any seizures, a
first look at the results showed that some models simply classify every sample as pre-ictal
and therefore have a recall value of 1. Since we do not want to deem a model like this as
the best, we use accuracy as the defining metric. All other mentioned metrics will also be
included when presenting the results.

We did not train a baseline model to compare the results of the best performing model to
a dummy provide a sufficient overview of the average performance of the models. The
detailed results of the best performing model are presented in the following section.

5.2.6 Performance of the best model

The CNN model with the highest accuracy demonstrates a balanced performance across
various metrics. The accuracy of the model is 0.7727, indicating that it correctly predicts
the outcome approximately 77% of the time. The precision is 0.7143, suggesting that
the model, while good at identifying positive cases, might too eagerly classify positive
samples as such. The confusion matrix of the model will give more insight later on. The

71



5 Results

recall is 0.9091, indicating that the model is very performant at correctly predicting positive
cases. The F1 Score, showing the harmonic mean of precision and recall, is 0.8, reflecting
the models consistent performance. These metrics indicate that the CNN model provides
a well-rounded performance with a strong recall capability.

Metric Value

Accuracy 0.7727
Precision 0.7143
Recall 0.9091
F1 Score 0.8

Table 5.4: Performance metrics for the best performing CNN model.

Parameter Value Parameter Value

Marker Type All Pre-Ictal Definition 2 min
Seizure Types All Post-Ictal Definition 10 min
Overlapping Markers Allowed No Sampling Rate 0.5 Hz
Exclude Seizure Start Markers No Faulty Data Value Cut-off 50,000
Exclude Seizure End Markers Yes Add Normalized Features No
No-Seizure Data Percentage 0% Remove Raw Features Yes
Hour Offset For Inter-Ictal Markers 5 hours Additional Features SD, Var, Mean, Min, Max
Pre-Ictal Label Percentage 50% Missing Value Strategy Negative-One
Inter-Ictal Label Percentage 50% Add Time of Day Feature Yes
Ictal Label Percentage 0% Remove Top Percentile (Outliers) 2%
Post-Ictal Label Percentage 0% Train-Test Strategy Last Seizures
Sample Time Window 5 min

Table 5.5: Parameters for best performing CNN model.

The best performing model uses a sample time window of 5 minutes, which is in line
with the trend seen in the average, where the top performing models use shorter time
windows. The hour offset for inter-ictal markers has been chosen as 5 hours for the best
performing model, this is also similar to the average which showed that a lower offset
leads to better results. One has to keep in mind that the average for the offset is skewed a
bit, due to the fact that we included a 10-hour offset in the grid-search. It also uses the
full range of features for its prediction, including the mean, minimum and maximum for
each feature. For the missing value strategy negative-one has proven to be the best, even
though the average showed that this hyperparameter did not have a great impact on the
performance of the models. No normalized features were added, and raw features were
also removed. This means that only the additional features (standard deviation, variance,
mean, minimum and maximum) were used for prediction.
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Figure 5.4: ROC Curve for the best performing CNN model.

The ROC curve shown in fig. 5.4 suggests that the model is performing well, with an AUC
of 0.80, meaning it effectively distinguishes between positive and negative cases about
80% of the time. While this is a strong result, robustness tests need to be performed to
accurately assess whether this performance would be replicable on unseen data.

The confusion matrix shows how well the model distinguishes between pre-ictal and
non-pre-ictal states. It correctly identifies 10 pre-ictal cases while misclassifying 1, giving
it a recall of 91%, meaning it rarely misses a true pre-ictal case.

However, it misclassifies 4 non-pre-ictal cases as pre-ictal, leading to a specificity of 64%.
This indicates a tendency for false positives. While this is still problematic, in the case of
epilepsy a false alarm are not as costly as not identifying a seizure correctly. Precision is
71%, meaning 3 out of 10 predicted pre-ictal cases are incorrect. The model prioritizes
sensitivity over specificity, making it effective for detecting pre-ictal cases but at the cost of
some false alarms. In medical applications, this trade-off may be acceptable, but reducing
false positives could improve usability. Adjusting the classification threshold or processing
features differently may help achieve better balance.
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Figure 5.5: Confusion Matrix for the best performing CNN model.

The training accuracy chart shows a problem, the accuracy goes down again after having
reached 70% after epoch 200. This is due to overfitting, where the model starts to memorize
the training data instead of learning to generalize from it. To mitigate this, techniques
such as early stopping, regularization, or dropout could be employed to improve the
generalization capability of the model. Additionally, the loss levels out at a very high rate
of about 0.45, indicating that the model is not learning effectively after a certain point. This
plateau suggests that the model has reached its capacity to learn from the training data
and is not improving further. To address this, further tests could experiment with different
learning rates, batch sizes, or even try different architectures to see if they provide better
convergence and lower loss values.

5.2.7 Predictions of the best model

As we have the meta-data for all seizures that are fed into the model we can take a look
which types of seizures are being misidentified by the model. The best model, according
to accuracy, only missed one pre-ictal sample, which had a non-motor onset. While it did
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Figure 5.6: Training loss and accuracy for the CNN model.

classify other non-motor onset seizure correctly, this specific seizure type categorization
seen in table 5.6 is only found once in the test set.

Table 5.6: Prediction accuracy on ictal test cases by seizure type

Seizure Type (Epilepsia IDs) Correct Total Accuracy (%)
Focal Onset - Aware - Motor Onset - tonic
(4SCV79, CEU856, HAES28)

7 7 100.0

Focal Onset - Impaired Awareness -
Nonmotor Onset - autonomic (DJDEH3,
LFLWD7)

4 4 100.0

Focal Onset - Impaired Awareness - Motor
Onset - automatisms (H6X6G9)

1 1 100.0

Focal Onset - Aware - Motor Onset - au-
tomatisms (HAES28)

1 1 100.0

Focal Onset - Aware - Nonmotor Onset -
autonomic (XY5FE5)

0 1 0.0

Total 13 14 92.9

For the inter-ictal test samples the model reacted sensitively, only achieving 63% accuracy
when identifying negative samples. Since we are talking about negative inter-ictal sam-
ples here, we could only match the Epilepsia ID to the seizure type the patient usually
experiences. However, in most cases, a singular patient within our study experienced
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multiple types of seizures if they experienced more than one at all. For this reason, only
the Epilepsia ID is listed in the first column, without any association to a specific seizure
type.

Table 5.7: Prediction accuracy on inter-ictal test cases

Epilepsia ID Correct Total Accuracy (%)
CEU856 1 1 100.0

H6X6G9 0 1 0.0

ZA8OX5 1 1 100.0

LFLWD7 1 3 33.3

DJDEH3 1 2 50.0

C4TQG5 1 1 100.0

4SCV79 1 1 100.0

9E4831 1 1 100.0

Total 7 11 63.6

5.2.8 Robustness of the best model

While these results seem promising, the model might simply be overfitting or reacting to
random noise. To rule out these scenarios, many tests regarding changing the input data
and looking at the reaction of the model can be conducted. We will limit ourselves to label
shuffling, feature permutation, feature perturbation and feature removal tests.

Label Shuffling

The label shuffling test changes the labels of the test dataset but keeps the input data
the same when evaluating the model. If the model performs significantly worse on the
permuted labels compared to the original ones, it suggests that the model is capturing
meaningful patterns rather than overfitting to noise. Naturally, this test was conducted
with retraining of the model.

As one can see in fig. 5.7, changing the labels leads to completely non-functional model
that does not correctly identify pre-ictal states whatsoever. This leads to a significant drop
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Figure 5.7: Confusion matrix for shuffled label test for the best performing CNN model.

in performance metrics as shown in section 5.2.8. The accuracy drops to 0.5, which is
equivalent to random guessing. Precision, recall, and F1 score all drop to 0.0, indicating
that the model fails to identify any positive cases correctly. The ROC AUC score also drops
to 0.3182, further confirming that the model is not performing better than random chance.
While these results suggest that the original models’ performance is not due to overfitting
or noise, more robustness tests need to be conducted to fully confirm the validity of the
model.

Metric Value

Accuracy 0.5
Precision 0.0
Recall 0.0
F1 Score 0.0
ROC AUC Score 0.3182

Table 5.8: Performance metrics for best performing CNN model with shuffled labels.
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Feature Permutation

To further assess the robustness of the CNN model, feature permutation tests were con-
ducted. These tests involve shuffling each feature one after another and trying to predict
on the modified test dataset. The drop in accuracy then signifies the impact the feature has
on the performance of the model. The higher the value the higher the drop in accuracy.
These tests happen without retraining the model, only the input test data gets altered.
Figure 5.8 shows the calculated importances for the most impactful features with a value
above 0.05.

Figure 5.8: Feature importances for the best performing CNN model. Importance score shows the
average accuracy drop when the feature gets randomly shuffled. Importance scores
below 0.05 not shown.

As can be seen in fig. 5.8, variance features have a great impact on the performance of
the model. Since no normalized features were added in this model and on top of that
raw features were removed, it could be reasoned that variance naturally should have a
high impact on performance. However, then the question arises why only variance plays
a significant role in this model and not also the standard deviation and possibly other
metrics like the mean, minimum and maximum of each feature. All variance features, 1
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through 15 can be seen as strongly impactful, with not a single different feature coming
close. Additionally, the meaning of the variation between variance features importance
scores could be questioned, i.e. what should be we take away from the fact the f4 feature
has an importance score double as high as f7. The role of the seconds_of_day feature having
an importance score of just less than 0.1 needs to be investigated further. The results of this
permutation importance analysis builds upon what we have seen in the linear correlation
hyperparameter analysis done across all trained models.

Feature Perturbation

Feature perturbation tests are designed to evaluate the robustness of a model by intro-
ducing controlled noise or alterations to specific features in the input data. The goal is
to observe how the models predictions change in response to these perturbations, which
can provide insights into the models reliance on particular features and its ability to
generalize.

For this test we try to disturb the dataset using three approaches. In the first we increase a
single feature by 20% and then try to predict on the modified input data. We repeat this
for each feature and assess the drop in accuracy. For the second approach we do the same,
but this time decreasing each feature by 20%. With the third approach we add normally
distributed Gaussian noise to the input data to see how the model reacts to different levels
of noise. The Gaussian noise is proportional to the standard deviation of the whole feature
across all samples.

Figure 5.9 shows the impact increasing features by 20% had on the accuracy of the model.
The sensitivity range displays a drop in accuracy in the positive range and an increase in
accuracy in the negative range. Only the features where the increase made a difference in
the resulting accuracy are shown.

Interestingly, only 5 features lead to a different accuracy score than the original input
dataset. Of those 5, only the increase for the seconds_of_day feature resulted in a perfor-
mance drop of 0.05. In all other cases, two mean features, one variance and one minimum,
the increase resulted in a 0.05 better accuracy than the unmodified dataset.

Looking at the inverse test, seen in fig. 5.10 we have 7 features that resulted in either a
drop or increase in performance. Decreasing 6 of these features lead to a performance
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Figure 5.9: Performance impact when increasing features by 20%. Positive sensitivity values
indicate a drop in accuracy, negative sensitivity values an increase in accuracy.

drop of 0.05, measured in accuracy. Only decreasing the variance for f4 resulted in a 0.05
increase in accuracy.

The results of model when Gaussian noise (see fig. 5.11) is introduced shows the instability
of the model. Even before reaching a noise level of 0.1 the model becomes only slightly
better than random guessing, which indicates possible overfitting. The sudden increase
between the noise level of 0.3 and 0.4 should be attributed to spurious correlation.

Feature Removal

With this test we want to check which features are most important for the model in the
training and therefore which features are being learnt from the most. Additionally, we
want to check how robust the model is to removing features before training. If the model
breaks down when removing any feature it might indicate overfitting.

The feature ablation test involves removing one feature at a time from the training and
testing dataset and observing the impact on the model’s performance. The result of this
test is visualized in fig. 5.12. Some features can be identified as not having a strong impact
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Figure 5.10: Performance impact when decreasing features by 20%. Positive sensitivity values
indicate a drop in accuracy, negative sensitivity values an increase in accuracy.

on learning, such as the minimum and maximum features of f14 and f8 respectively.
However, in most cases the model takes a hit in accuracy when any singular feature is
removed. For over half of all features the removal leads to a performance equivalent
to random guessing or worse. It is not plausible to say that every feature is of high
importance to the model, which is why the performance breaks down. The more likely
reason is that the model is overfitting on either the training data or the hyperparameter
configuration.

One more compelling reason why the model’s performance might be spurious correlation,
is the loss in performance when the seconds_of_day feature is removed. It is unlikely that
the feature should have such a high impact on the model. As was evaluated in section 4.3.1,
there was no indication that the seizure times correlated with the time of day.

When looking at the averages of the new resulting accuracies when certain feature types
are dropped, it can be seen that in most cases the model loses any classification ability
with its accuracy dropping to about 50%.

These results, especially including the Gaussian noise tests, suggest that the model is
overfitting to the hyperparameters because it relies heavily on specific configurations of
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Figure 5.11: Impact of Gaussian noise on model performance. Noise level calculated as fraction
of standard deviation.

the input data and feature set to achieve high performance. This dependency indicates
that the model is not generalizing well to unseen data and is instead learning patterns
that are specific to the training set. While overfitting can occur due to overly complex
model architectures, we do not believe this to be the case. Insufficient training data is
the most likely reason why this is happening. Lack of regularization techniques such as
dropout could additionally be another reason for this drop in performance. To address
this more experiments with a larger dataset or additional regularization methods could
help improve the models robustness and generalization capability.

82



5 Results

Figure 5.12: Impact of feature removal on CNN model performance. Accuracy is shown as the
new resulting performance on the test set. The green line marks the performance of
the original model, the red line marks where performance drops to random guessing.

Removed Feature Type Resulting Accuracy (%)

Overall Average 51.9
Variance Features 50.6
Standard Deviation Features 51.8
Seconds of Day Feature 54.5
Mean Features 50.0
Maximum Features 53.0
Minimum Features 53.9

Table 5.9: Average accuracy for the different feature types from results seen in fig. 5.12.
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6.1 Limitations

There are several aspects that could be limiting potential effectivity of the resulting clas-
sification models. The final dataset of valuable patients and seizures is small compared
to other medical research areas where the number of total samples used in a machine
learning process are often in the thousands [79]. This probably does affect the resulting
performance of all machine learning models that have been trained using our data. It
cannot be determined how much of an improvement could be made using more VOC
data.

On top of the possibility that not enough data has been captured, VOC data can also be
inherently noisy, influenced by a range of factors such as environmental contamination,
sensor malfunctions, and other external variables. These contaminants might come
from background sources like food, cleaning products, or even air quality variations
[80, 81]. Such external noise can obscure meaningful patterns tied to seizure events,
making it harder to differentiate between seizure-related VOC changes and those arising
from unrelated sources. Furthermore, VOC sensors themselves can introduce noise due
to imperfections in calibration or drift over time, which can impact the accuracy and
consistency of data over extended periods.

For supervised learning models, accurately labelled data is essential. In the case of
seizure prediction, the only reference point is a seizure marker, which could be faulty or
misleading. Additionally, VOC profiles may not change in a consistent or easily detectable
way before or during a seizure. Inaccurate or imprecise labelling of data can impair model
performance, as the model learns from potentially incorrect or incomplete information.

The VOC profiles associated with seizures can vary significantly across individuals due to
differences in metabolic processes, medications, genetics, or even lifestyle factors like diet.
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This makes it difficult to generalize findings from one patient or population to another.
If a model is trained on VOC data from a single individual or a small group, it may not
perform as well when applied to a broader or different population. The variability in VOC
signatures can also complicate the identification of consistent patterns associated with
seizures [82].

Currently, there are no standardized protocols for collecting or interpreting VOC data in
the context of seizure prediction. Differences in sensor types, environmental conditions,
and data preprocessing steps can lead to significant inconsistencies between datasets
and experiments. Without standardization, it becomes difficult to compare results across
different studies or to combine data from multiple sources. This can hinder progress in
the field and limit the ability to draw generalizable conclusions.

The models, especially the well performing models, are not above questioning, while
the label shuffling test showed that the model is learning actual patterns found in the
data, the robustness tests highlighted clear weaknesses when features were dropped
completely. The introduction of only little noise to the dataset also lead to the model losing
a significant portion of its accuracy. It remains unclear whether the model overfitted on
the hyperparameter and just by chance performed well on the test data. More statistical
tests or if possible an actual real-world test in the hospital would be the best option to
provide evidence that the model is predicting certain seizures correctly.

The selection of the parameter grid inherently limits the study to some degree. While
all decisions regarding the parameter grid were based on state-of-the-art literature and
in some cases preliminary experiments, it is possible that well performing combinations
might have been missed. Restraints regarding time and computing power limited the
number of possible combinations that we were able to try. Further parameter range tests
could possibly lead to interesting results, as we already saw positive correlation trends
regarding certain hyperparameter.

6.2 Outlook

It remains unclear whether a prediction based only on volatile organic compound data
can be made. While the grid-search resulted in a few well performing models, with the
best model reaching an accuracy of 77%, those models did not fully withstand thorough
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robustness tests when changing or dropping out random features. While we cannot say
for certain how those trained models would perform in a clinical setting predicting unseen
seizures, we do not expect them to achieve similar performance as on the testing data. The
average across all trained models showed that the task at hand remains a difficult one,
seeing as only the top quartile achieve reasonably good results.

This is not to say that it is not viable to predict epileptic seizures using olfactory data, but
that in this case the combination of limitations we experienced during the study resulted in
unstable models that in theory perform well, but might be overfitting on the combination
of hyperparameter or on the training data itself.

Regarding the importance of hyperparameter, we did see small trends indicating some
value ranges were better than others. While these trends were not strong enough to draw
definitive conclusions, they do suggest that further investigation into hyperparameter
optimization could be beneficial. Future work should focus on more robust methods for
feature selection and model validation to ensure that the models are not overfitting and
can generalize well to unseen data.

In the feature importance analysis, the variance of all features emerged as a significant
factor, whereas other metrics such as standard deviation, mean, minimum, and maximum
had little impact on the model’s performance. Feature ablation tests, where the model
was retrained after removing individual features, revealed that while a small number of
features had minimal effect on performance, in most cases, removing a feature resulted
in a significant drop in accuracy. This suggests that the initial accuracy may have been
influenced by spurious correlations.

In conclusion, while our study faced several challenges and limitations, it has provided
valuable insights into the potential and limitations of using volatile organic compound
data for predicting epileptic seizures. Not only was this a first try at VOC-based prediction
of seizures but also a first investigation into which hyperparameters have a significant
impact on the results, something that has not been studied thoroughly yet. Further
research with larger datasets, more robust validation techniques, and improved feature
selection methods is necessary to fully understand and harness the predictive power of
this approach.
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7 Appendix

Please note that the repository containing all code and results is not publicly due to the
sensitive nature of the data involved. If you are interested in the code please contact me at
me@alexanderwolf.xyz.
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